AD-R161 336 ﬁSlll (ﬁUTOﬂﬂTED INTERACTIVE SIMULATION MODELING SYSTEM)
X VERS USER‘. . (U HUGHES AIRCRAFT CO FULLERTON Cﬂ

GROUND SVSTEHS GROUP S KNEEBURG FEB 83 ESD-TR-OS
UNCLASSIFIED F336135-81-C-3998 9

Y

o

| -1 | | Je] B
EEE

l

2.

-]

2.5
i

ol £ N i
< g2 o g
,t

¥

I
l!l

o

TEREERE

c—
.
———

Er

r

re

i e

)
o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAY OF STANDARDS - 1963 - A

! »

gl Ll

ESD-TR-85-127

AISIM VAX VERSION USER'S MANUAL

S. KNEEBURG

AD-A161 556

Hughes Aircraft Company
Ground Systems Group
P.O. Box 3310

Fullerton, CA 92634

February 1985

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

o TR

e b e S

NOV 2 2 1985

\ E

Prepared for

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
DEPUTY FOR ACQUISITION LOGISTICS AND TECHNICAL OPERATIONS
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

MG FiLE coev

..............................

...................

.........

LEGAL NOTICE

When U.S. Government drawings, specifications or other data ore used for any
purpose other than a definitely related government procurement operation, the
government thereby incurs no responsibility nor any obligation whatsoever; and
the fact that the government may have formulated, furnished, or in any way sup-
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the hofder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be reloted thereto.

OTHER NOTICES

Do not return this copy. Retain or destroy.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved for publication.

A ’) e l,’ Ly Z Sl F] m‘g

N. ANN KUO, 2Lt, USAF WILLIAM J. LETENDRE

Project Manager, Program Manager,

Requirements Analysis Computer Resource Management
Technology

FOR THE COMMANDER

ROBERT J.
Director, Computer Systems Engineering
Deputy for Acquisition Logistics

and Technical Operations

SR LSRR ORI LIS AE

Bl Salh R NG S A IR R G ET A it aa R Ry

R At s S TR ™ P §

UNCLASSITIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
UNCLASSITIED NONE

26 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE;

26 DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION UNLIMITED.
4 PERFCRMING ORGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

ESD-TR-85-127

6a NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
HJGHES AIRCRATFT COMPANY (1f applicable) COMPUTER RESOURCE NANAGEMENT
GROUND SYSTENMS Ccnoup TECHNOLOGCY ™ROCPAM, DEPUTY FOR (OVER)
6c. ADDRESS (City. State and 7Z1F Code) 7b. ADDRESS (City, State and ZIP Code)
. 0. BOX 3310 ELECTRONIC SVYSTOMS DIVISIOM (AFSC)
FULLERTON, CA ©2634 HANSCOM ATB, MA 01731
88 NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER '
ORGANIZATION (1f applicable)
COMPUTER RESQURCE (OVER) ESD/ALSE r33nls-81-Cc~5098
8c ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
ELECTRONIC SYSTEMS DIVISION (AFSC) PROGRAM PROJECT TASK WORK UNIT

HANSCOM AFB, #A 01731 ELEMENT NO. NC. No. NO.

11 TITLE (Include Security Classtfication)
AISIN VAX VERSION MMSER'S MANUAL (U) 647401F 2522
12. PERSONAL AUTHORIS)
¢. KNEZEBURG
13s. TYPE OF REPORT 13b. TIME COVERED 14. DAYTE OF REPQORY (Yr, Mo., Day} 15. PAGE COUNT
TINAL FROM 10 1985 TEBRUARY 306
16. SUPPLEMENTARY NOTATION

17. COSAT!I CODES 18 SUBJECT TSRMS (Continue on reverse if nccessary and identify by block number)

FIELD GROUP SUB GR AISIM DESICN PROCLESSES SIMULATICN MODELING
ARCHITECTURE

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS DOCUMENT IS THE USER'S MANUAL FOR THE AUTOMATED INTERACTIVE SIMULATION
MODILING SYSTEM (AISIM),

THIS MANUAL PROVIDES THZ USE®R WITH A COMPREUENSIVE CUIDE FOR USINC THIS
SYSTEM TO PERFORM HIGH LEVEL DISCRETE-EVENT SIMULATION OF COMPUTZR-BASED
SYSTEMS.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

uncLassiFIED/UNLIMITED (O same as re1. B oTic useas O UNCLASSIFIED i

22¢ NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22¢ OFFICE SYMBOL
{Include Area Code)

DD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. UNCLASSIFITD
SECURITY CLASSIFICATION OF THIS PAGE

LUNCILASISIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Ta.

3a.

NAME OF MONITORING ORGANIZATION (CONTINUED)
ACGUISITION LOGISTICS AND TECIHNICAL OPERATIONS

NZAME OI' FUNDING/SPONSORING ORGANIZATION

MANAGEMENT TECHNOLOGY PROGRAM, DEPUTY FOR ACQUISITION LOGISTICS

AND TECHNICAL OPERATIONS

(CONTINUED)

UNCLASSIFIED

SECURITY CLASSIFICATION OF TMIS PAGE

e e e " h " a o e a e . - e
BRI WA 1P I ‘.- ‘.-\.-“f | AR

o

YT YT

T—p——

ACKNOWLEDGEMENTS

This manual was prepared by Hughes Aircraft Company under
contract # F33615-81-C-5098. The work was sponsored by the
Computer ¥ngineering Applications Division (ALSE), Deputy for
Acquisition Logistics and Technical Operations of the Electronic
Systems Division (ESD) of the United States Air Force, Hanscom
AFB, MA 01731. Funding for the effort was provided by the Air
Force Computer Resource Management Technology Program, Program
Element 64740F.

Program Element 64740F is the Air Force engineering development
program established to develop and transfer into active use the
technology, tools, and techniques needed to cope with the
explosive growth in Air Force systems that use computer
resources. The goals of the Program are to:

(a) Provide for the transition of computer system
technology developments in laboratories, industry, and
academia to Air Force systems;

(b) Develop and apply software acquisition management
techniques to reduce life cycle costs;

{(c} Provide improved software design tools;

(d) Address the various problems associated with
computer security;

(e} Develop advanced software engineering tools,
techniques, and systems;

(£) Support the implementation of high order
languages, e.g. Ada;

(g) Address human engineering for computer systems;
and

(h) Develop and apply computer simulation techniques

for the acquisition process. Acceasion For

Distrivet oy

-

Dist ;}it" b L

111 B_l

Avail: .~ Lt T iag ’

NTIS GRA&I

DTIC TAR

Unannonnced i

Justifiecntten__ |
————]

By i

......

______ S T R R TR T S TR TR T TR RN) - s A i S A S el nad cadt i

TABLE OF CCNTENTS

Section

1. INTRODUCTICM svavesavvcsccscnnsnes cectesesercrseseccasccssnsans
1 PURPOSE AND SCOPEcceveeceneccncecscncacncnscnnnaa
2 ORGANIZATION .iiccecocevnsccnososcancsscascan cesencans
3
4

DOCUMENTATION CONVENTIONS .e.ocecosccnccccccvcoccsanes
APPLICABLE DOCUMENTS .cvcevcsoncnccoconsoncanse vesenns

T‘haT-k‘ra
W e b

AISTIM CONCEPTS «ecvcocscascocssasesssasnsessosssscoscsosscocnsa
2.1 CHARACTERISTICS OF SYSTEMS MODELED BY AISIMcc00.
2.2 MODELING ...vcevenccees secsesccccsessasctoceressssssrune
2.3
2.4

DESIGNING MODELS esesssrenerrscscsssesssesnna
CONSTRUCTING AN AISIM MODEL .ccoeveoccccccscnccscssnce
2.4.1 Charting a Paper Model .cc.veecccccsconcncanas
2.4.2 Defining the AISIM Modelcceveescercencas
2.5 AISIM MODELING ENTITIES ...ceccccccescscacssccasascnans

B b W W NN

IM ENTITIES AND OTHER MODELING CONSTRUCTS .cceocees cecsans
xENARIO ® 5 9 0 00 06 00T 0L SO S CEN DS OO0 TP NSO T PR ey

LOOAD R NN N RN ERRENEERERE NN NEERERENE IR NN NN NN NN

[}
= O B N

—
W N e

ITm 0 0000800006000 PENNNCL0000CE0ESTIDNIPONCSEOEOCEONSOIERROTOTOES

USER DEFINED QUEUES .eecotccncececessascsnccsaccsancss
SYSTEM DEFINED QUEUES .icieevcecccscsnsacnsscssccccnnnsa
3.5.1 States Associated with RESOULCES .cececocvese
3.5.2 Cross Reference SetS c.cceeececsceccnacccscns
RESOURCE ccevcececeocvasonsossssscsoncsonssascsssasans
ACTION ciececcens S
PROCESS cccevcosvovacsesscccoaascccssvsscascocosccacoss 3-17
PRIMITIVES .cececescocencsoccoccccscscccvscasccsssnsnns
3.9.1 ACTION t.vevcecenceassasecncacssscncccascnsnsse 3=24
ALLOC .s.cvveevosseccascccccssosacssnncssccass 3-26
ASSIGN .vceectscscncsaccscsncavsnsoncsansonse 3=27
BRAmH ®es0ss0esrsast st esOeOOEIEENOIBEESTOEORTODS 3-29
Y) 3-30
COMPARE .cocecccecscncocsncanssooccssccossnsa 3-32
CREATE .iiiececcrosscoccsccsosscosancccsascns 3-34
DEALLOC .eceeecenscrasconcsssoassconssancenssos 3-35
DESTROY .eceececocrcsvccassossssnossoscacsces 3-36
ENTRY .eccececvsacnosctcsccscccnvconcacnsansne 3-37
EVAL 00 0000000000000 0000000000000000800CCCETIESEN 3-38
FILE escc s ©9 8000000000 sers00s0secoN 0RO 3"40
FIND 9060000000000 00000 0000000000000 0000b00000 3"41
me 985 0000000000000 9 0000000600000 000000000000 3-42
LOOP tiveecocevscoecocacacoccecscosncnsansoss 3=43
PROB IEREERREEE RN TN YRR RN XN NN NN NN NN N N 3"44
REMOVE ..ccceecvescsasscscacentscssssnsconass 3-45
RESEI‘ 6900008000 0000000 000000000000 00000 008000 3"46
RES[ME S0 0080008000000 000000 SCENICOINIOTEOOETRDS 3—47
SEND P00 T 00 C 00T 000000 R000R00CRCENIOCREBOETSSTS 3-48
SUSPEND .ccivecoccvonsassoncoccsssssscnnannss 3-49
TESI‘ R R I N N NN NN R EE XN N 3‘50

VN wNh— 0

(i-luuutr)wwwww
—
)]

W
1
N
=

\O WO WO WY \OWWLW\IWL\WWWWWOWOWWD

LI) .

NN N b s 2 s b = O 0 U W

NHO VOV WNHO

WWWWWWWWwwwWwWwwWwiww WWwwwwww
» & o+ 6 8 ® e s o » e
e o o s »

Section

4.

5.

3.12
3.13
3.14
3.15
3.16
3.17

Pl I T S Jr e Sl v Zh i e i 2 it S

3 TRACE . ieieoeetocosncsaccssscssssoscscssoassasase
4 UNLOCK t.ceovecssvscacscscsssossrssnscscsssccsssssese
PATH TABLE - NODE — LINK cvcevcencscscccscccsose
ABLES secececcsvcosanssccsaasarsascsosesosscssscsccncsoss
3.11.1 Discrete TableS t..ceecesccessasccassssccccce
3.11.2 Continous TaDleS .cieescrcccstossossncccssssses
3,11.3 Alphanumeric Tables ...cceceeeesccsccscnenass
ATTRIBUTES .cceceeccssocesccsacscnsssccsscscscscscscsssnscsss
CONSTANTS AND GLOBAL VARIABLES ctvcceevccoccccoscccanse
LOCAL VARIABLES ..ccevesocnssscossssosscsssssccconssccns
ALPHA LITERALS ..cocececcesonsecssnncssanssssssacssascnsce
KEYWORDS .cceeescctsecossccosnacasceansasncscssossssanssse
MESSAGE ROUTING SUBMODEL secvecocerccscsncscscscansascs

AISIM SYSTEM OVERVIEW AND SYSTEM INITIALIZATION ...cceccoacas

4.1

REACHING THE AISIM READY LEVEL .cccececoccvccsscssacns

AISIM READY LEVEL ..ccccecrocerecscesoscsasacsssascccocnananannse

.

TG EGEG RS ECRCRT, N R RV RV, NV, NV N RV, N N)
.
b= et b s P o b s 2 2 O 00) O UL ot

WO NoaWm Wi +-O

DESIGN
6.1

6.2

INITIATING AN ANALYSIS SESSTOM ..cceveeencscsscoascsse
BACKING UP A DATABASE cecrecesscrcsacrssanas
CHANGING THE CURRENT PARAMETERS ...icecevesssaccccncns
DELETING PROJECT FILES .ccieecsscccscscscvovonssccscans
INITIATING A DESIGN SESSION ..iecceeoocsscscccesossasns
VIEWING OUTPUT REPORTS (cicesccccecncccenvecencscssans
RETURNING TO VAX/VMS READY LEVEL (cccvcvoveccscsesvsne
CREATING A MODEL LISTNG .tucceececccccsorsssaccsconnss
HARDCOPY OUTPUT OF THE PROCESS FLOWCHARTS .eceececcess
OBTAINING HELP FROM THE SYSTEM .cccveeocsncscscssssncans
EXERCISING THE LIBRARY FACILITY ..ccucecncrsccsccnenss
LISTING THE CURRENT OPTIONSccccsaccscccasssannces
LISTING THE COMMAND PROCEDURE LINESceoceesceccncns
DISABLE THE LISTON OPTION ,....cec0cceevcesssosscasane
DISABLE AISIM MESSAGES .ciecececoanscercscvcascasaannsse
DISABLE MSGOFF FEATURE ...vcceccecscocancosacensscnnss
PRINTING OUTPUT REPORTS ...ieveeecececvocncosscsasnanns
INITIATING A REPLOT SESSION sccevvecvscccosssanrsnccns
RESTORING A DATABASE

(AFTER A CATASTROPHE HAS OCCURRED) .civececorccscscnns

USER INTERFACE (DUI) veceveacecssccccconsssscsssanaans
DUT COMMAND SUMMARY .icicccocccosoononscsssnconsssnsanse
6.1.1 DUTI COMMAND: ARCH ...cecececscsscsccevcecocne

6.1.2 DUI COMMAND: COPY teceevcccvcncoscnsnsassccns
6.1.3 DUT COMMAND: DELETE .ceccecvessssccacscccese
6.1.4 DUI COMMAND: EDIT ceeevcccsesssansassnscnssas
6.1.5 DUTI COMMAND: END ..cevecoccococssvsosoncnsoanse
6.1.6 DUT COMMAND: HELP cccecscocvccsvessscscsacasne
6.1.7 DUI COMMAND: LIST ciceeccasoosscesscsscssnsns
6.1.8 DUT COMMAND: SAVE .vcceesccccscoccoscsssncsnns
6.1.9 Termination of a DUI SeSSiON ce.evesescsscces
PROCESS EDITOR INTERFACE (PEI) ccececececvoscvsoccsscssse
6.2.1 Use Of the PE]l .t.iiiicevecsosososssccssnssvcns
6.2.2 PE]I COMMAND: BOTTOM .¢evveesasacescsaccsncnns

vi

3-51
3-53
3-54
3-55
3-57
3-57
3-57
3-57
3-59
3-60
3-62
3-64
3-65
3-67

v P -S
[UL 11
w

Llnmuuinm
WO o0~JON NI+
o

v v
[
-
w

5-14
5-15
5-16

6-10
6-11
6-12
6-13
6-14
6-15
6-15
6-17

1
[
1
[
«

Pl s Ry

. AR A A i N N TR ——

Section Page

PEI COMMAND: CHANGE tesesesessesscsnnsa 6-18
PETI COMMAND: DELETE ..ececccocs ceccsesosesenae 6-19
PET COMMAND: DOWN .veeeveescovscncscccsansses 6-20
PEI COMMAND: DRAWcocacee eeessccsssscasss 0=21
PET COMMAND: END .eceescvrcccccaccoasvosovona 6-22
PEI COMMAND: HELP ..vevcvccccscvrccssnscncncns 6-23
PEI COMMAND: HCLDc0cee sessesssescsene n-24
PEI COMMAND: MENU Cectesesccnseccssacs 6-25
PE] CCMMAND: NOCRAW .cecvesessscssevocscscsccs 6-26
PEI COMMAND: PLACE ...ccvcescccccncscccsccns 6-27
PETI COMMAND: REDRAW ceececees ceseenesecncecs 6-28
PEI COMMAND: TOP .ccececesvcosccsnsssnoncnne 6-29
PE] COMMAND: UP iicvesocccssoccscncsaccssnacs =30
Terminating @ PEI SesSioN ..eseececscnceasacss 6-31
ECTURE DESIGN EDITOR (ADE) .ceveccococossnsncoass =32
Concepts FOr Using ADEvececccacssascnans 6-32
Use of the ADEvececnens ceserctsansscnacs 6-34
ADE SYMPOLS .teervcesasesessssssccssconcnnsans 6-36
ADE COMMAND: CHANGE cecesosscnsnse teeces 6-27
ADE CCMMAND: COMNECT ..iveececaccoccsscocsces 6-38
ADE CCMMAND: DEFINE ceevoees cescescsscacsans 53=-40
ADE COMMAND: DELELTE .ccecevesase cevssscscas 6-43
ADE COMMAND: DRAW ..evccesvcesscnsacscsscasnans 6-44
ADE COMMAND: END cvceeceacscccsvescoscensasne 6-45
ADE COMMAND: LIST .ececcoccevccrscecsscsassone 6-46
ADE COMMAND: MOVE .ecovceccccassscsnccnocane 6-47
ADE COMMAND: NODRAW .eeccoccccccscsvncanscnssce 6-48
ADE COMMAND: PLACE svececovecscocccccsscnens 6-49
ADE COMMAND: RECON .cesceccosccscsncasssncse 6-50
ADE COMMAND: REDRAW ..cceeeccoscsesccccsesccs 6-51
ADE COMMAND: SAVE .cececeoscecsvacncanass 5=~52
ADE COMMAND: WINDOW cocvoccscscsacsassccnans 6-53
Termination of an ADE SeSSiON ...ceveevcecsoss 6-54

NRDNONNDNRON DIV N NN

e o e o o
e o & e @ . o

oYU e N O

6.3

8

* e . *. & o o o . s o . » o e
WWWWwWwwWwwWwwwuwbwwwww
L » LI ¢ o . . o . . L]

.

A AN NN ATN AP AN N NN Oy
N .
.
b bt et b et = e b s D OO0 3 YU LR B R b e e WO GO O U1

M~y UndeWNH+HO

7. ANALYSIS USER INTERFACE (AUI) ..ievececscccocesosvansacacaccns 7-1
AUI COMMAND: CANBREAK ,..cveececceccccscncnsssscsscns 7-9
AUT COMMAND: DEFPLOT .yuieccececsccesscscsssccnsccnons 7-7
AUTI COMMAND: DELETE .cyeecescececcoscsocscccsoncanans 7-11
AUI COMMAND: EDIT .evccecscccssccccscccnssnccssesnnas 7-12
AUT COMMAND: END ..ccvvecccacovsnocnsvocnsasocccannas 7-13
AUT COMMAND: GET .ececveccess csessccccecnscsncsascnan 7-14
AUI COMMAND: GO cccvecveacsossnscacaccsncascososaonss 7-15
AUT COMMAND: HELP cevvcocevssccsccsvsnconnsassscsncnnse 7-16
AUI COMMAND: INFRES S N 7-17
AUI COMMAND: VLIST .eccecencsscsccccscacssssccosccnnns 7-18
AUT COMMAND: LISTVAL c.ccecccccscasacossscssosssscssse 7-19
AUI COMMAND: PLOT .eccecsesocscenscconasonvscanascnas 7-20
AUI COMMAND: SAVE .cvvcesececccncsccnccccasssacsansesees /1=22
AUI COMMAND: SETBREAK ...cccevscecnscccoccccsscnceseans 7-23
TERMINATION OF AN AUI SESSION ...ceevcecsconcscosscans 7-24

*® e e e o

NNNNNNNNSNNNNNg9Y
L]

®
.
g »

N b == e = 2O O~ U B W N
g N W~ o

USER INTERFACE (RUI) 9 ® 00 000 8PP PSP ONPOOSOSESIRSIEOEOERNOOLIOIESES 8-1
RUI CQ“NANDZ CLEAR © 00 20000000 0s0srs00 e 00RO PLLIOEIITBTY 8-3
RUI COMMAND: DELETE S s s 0s e EP I IRGAsSs et PENROOTOer el 8-4

 Co

vii

e e ~ ST e e . ~ . . .
...... e e T e e A e e A T e T R L L L S
NI I I caa EPA I T T A T S Ty T e T
ML e el e > gt 2 e T) PR R, SR L R e ORGSR S PR

Adite At Sl BcAh S e v ey

3 RUI COMMAND: END .cevecsscsonnsas T 8-5
4 RUI COMMAND: GET seceevcescevcscssacacsecsssccsccsssces 8-6
S RUI COMMAND: LIST ccevececncss tecescsescsesssssesensne 8-7
6 RUI COMMAND: PLOT ..veeeecececencsosesnssssssccnscasas 8-8
7 RUI COMMAND: SAVE sieececcccescssesoasossnccccsnnsane 8-9

9. HARDCOPY USER INTERFACE (HUI) .eeveecececocecccenscncancsanes 9-1

10. LIBRARY USER INTERFACE (LUI) covececeveocosocesacsceosnssasas 10-1 -
10,1 LUI COMMAND: CHBCKIN ..veveececcnsscecsoascscscsnscass 10-4
10.2 LUT COMMAND: CHECKOUT ...ecceseevcccccscacacsccnssesss 10-5
10.2.1 CO COMMMAND: DELETE ..eceeeceescsccccacscses 10=7
10.2.2 CO COMMMAND: END P ¢ 18
10.2.3 CO COMMMAND: EXTRACT .vecevee ceecsescesacees 10-9
10.2.4 CO COMMMAND: HELP ceseecnns cesecacacsss 10-10
10.2.5 CO COMMMAND: LIST cicoeccecncscssvcacasssoss 10=11
10.3 LUI COMMAND: CONVERT .c.cecoocces sesscacenncansnseses 10-12
10.4 LUI COMMAND: MERGEINcccc000evocccncss cecsevessess 10-13
1 MI COMMMAND: END ..uvececececscccssnseaasoses 10-16
2 MI COMMMAND: HELP .ecevsvcecccccscscsccssses 10-17
3 MI COMMMAND: IGNORE cesesesessasssss 10-18
.4 MI COMMMAND: INFO s.ccevecasccsscscacssescss 10-19
S MI COMMMAND: RENAMEcccecsvsvcasssceses 10-20
6 MI COMMMAND: REPLACE ...ceeesesccessesecnoccss 10-21
10.5 LUI COMMMAND: MERGEOUTccce. seeccencescsesnsnses 10-22
10.5.1 MO COMMMAND: END ,..0cc00eses cecsecresssssss 10-24
10.5.2 MO COMMMAND: HELP ceueevenescsascccsnsces ees 10-25
10.5.3 MO COMMMAND: LIST ceeeeccvascoscscsccscaases 10-26
10.5.4 MO COMMMAND: SELECT .soeeccecccccnsccsancanes 10-27

11. AISIM SIMULATION REPORTS teeeesccssssevssecane ceesessases 11-1
11.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM ...ceceee.. 11l-1
11.2 REPORTS RESULTS AND HOW TO OBTAIN THEMcveeeseesss 11-2

11.2.1 Constant Reportcceee sessescessrssasacaes 11-8
11.2.2 Variable REPOrt ..eeeceecscscccossssssnscnna s 11-9
11.2.3 Ttem REPOTL teiveevececcocassnssssvasascnsaecss 11-11
11.2.4 Resource RepOrteeeeeees cessseencan ceeees 11-12
11.2.5 Action Report e vesessssesesesses 11-14
11.2.6 Queue Report cecens esecsesscscssssssss 11-16 .
11.2.7 Process REPOrt ...cecvesesssssccccccssscassss 11-18
11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS0... 11-21
11.3,1 TOP, BOTTOM ..cvovvncas ceceveresssssassessnasy 11-21
11.3.2 UP, DOWN .evveiccenes etesessessscseasvesssens 11-21

11-3-3 FIbID PO O SLENLNLLELIBIPIETELESEENSOGLEENINISECEOICEETOIS, 11-21

11.3.4 LIST tvevenone Gecesecenacnn cescarecesnesensss 11-22
APPENDIX A OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION A-l
A.l IMPORTANCE OF DATABASE BACKUP AND ALLOCATION ...cceeces A-1
A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION ...e0c0e A-l
A¢3 AIsIM PLUI‘S LA 2K B X B B BE BN B 2E JF B0 B BU I BB Y BN N B BE B AN BN B BN R B BB BN N N N) A-z
A.4 PRODUCING HARDCOPIES OF THE TERMINAL DISPLAY ...covee. A-3
A.5 EXECUTING SIMULATION RUNS AS BATCH JOBS civceevoccccen A-4
A.6 RANDOMNESS IN RESULTS s.ievsvecsnccscscsoscsocsssnosses A-8

viii
o e L e R e e e e

Section Page
APPENDIX B AISIM ERRORS ..cviierceerecsstnvescccsnssccnssssnnsnan B8-1
APPENDIXC GLOSSARY P N N R I R R R R S S N A A R R E R RN R R I N A C-l

APPENDIX D MESSAGE ROUTING SUBMODEL ..ccconcssscnssanonscsancncns D-1

ix

-

DA . LY
ISRl IS P SN 3

—" e R I T T ¥ Y~ W v V"7

LIST CF ILLUSTRATIONS

, FIGURE PAGE

AISIM Entity RelationshipS .e..eeeeecesseccscesnceccncnnass 24

Formm for the Secrario FNLifY ..eecescesccecoscsccoscesssses 3=2

Form for the Load Entity .eeiieveccecnscacccnscssascccnsees 3=4 N

Form ror the Item ENtity .cccieececceesssscossccsccsasassase 3=7

Form for the Queue Entityceceevenescesssrsssssencesass 3-10

RESOUICE StAteS cevieveecocssscesssecesconcsnsacsssccsossee I=12

Form for the Resource ENtify ..eeeesiecscccsssccsscnnssoess 3-14 -

Form for the Action ENfity .eceeccecesscccasssssscoscssenas 3~16

Initial Form for the Process ENtity teeeceecccecscsscessaess 3-18

Form for an Item Passing PIOCESS .veeevseessasccssssocsssss 3-18

Form for Parameter Passing PrOCESS ...veeseseesccssccssssee 3-19

Sample Process Diagram ...cceescecscssesscsesssossscassscnas 3=20

Graphical Representations of Process Primitivese.... 3-23

Form for an ACTION Primitive ..ceeececeseccastcscccccnsconss I=24

Form for the ALLOC PrimitivVeceececececcsescscnsscncceee 3-26

Form for the ASSIGN PrimitivVe ..eieeceecosesoscccscscscscnss 3=28

Form for the BRANCH Primitiveeeeecececesnccccscoseoses 3=29

Form for the CALL Primitive .su.ceeieececascecsaccossnsosssss 3-31

Form for the COMPARE Primitive ..eveeecscccssccessscccccsse 3-33

3-19 Form for the CREATE PrimitiVe ...ccccececececocccsssescsscnse 3-34

3-20 Form for the DEALLOC Primitiveeceeccccescsescesccccass 3=35

3-21 Form for the DESTROY PrimitivVe .veceeeccececsccsccscsscasaecs 3=36

3-22 Fomm for the ENTRY Primitivecevececeosscsscccsscsssces 3=37

3-23 Form for the EVAL Primitiveeeceeecsooccccscessscssessee 3=39

3-24 Form for the FILE Primitiveeeeceecccccccassccssasassss 3=40

3-25 Form for the FIND Primitiveececoeesssccccsceccscassnss I3=41

3-26 Form for the LOCK PriMitiVe .e.eceeeeccececcssscsscsascsenss 3-42

3-27 Fomm for the LOOP Primitiveceeececcscsceveccccassasses 3=43

3-28 Form for the PROB PriMitiVe e.veeesecscoscossnsoscosssscess 3-44

3-29 Form for the REMOVE PrimitivVe ..ceveescecessoscscccncsssnss 3=45

3-30 Form for the RESET PriMitivVe ..eeeveeescccessescscccscssceas 3-46

3-31 Fomm for the RESUME Primitive .veeeeeeecsssssscecesansoscee 347

3-32 Form for the SEND PrimitivVeeeeecesccscscocccoesaseseces 3-48 N

3-33 Fomm for the SUSPEND Primitive .e..eveveosescseossscssscsses 3=49

3-34 Form for the TEST PrimitivVe .veecescosccesscossasescccsssse 3-50

3-35 Form for the TRACE PrimitivVeeeeeceecsccscessccccossssses 3=51

3-36 Form for the UNLOCK Primitiveeoeeeecesscccesacasssasa 3=53 -

3-37 Form for the WAIT PriMitivVe ieeeeeeececeecsconssscscsasenses 3=54

3~38 Sample Legal Path Table ENtri@Seeeeeececcsccecsscenssse 3=55

3-39 Form for the Table ENtityeececesescsessosccssscsccssees 3=5

3-40 Forms for Constant and Variable EnNtitieS .eeeeeeecsscccceses 3=6

AISIM Levels of OperatioN..ieescscssecccccscsnconcsacssenes 4=2

AISIM READY Level Command SUMMALY ceeesecscascsscascscasnss 5=2
6-2
6-4

[}
o b W O~ B WN

|
= s
WA Ui WO

wwuuuuuwwgf)uwuwuwwuw

4-1

5~1

f~1 Terminal ProfileS ..uieceecsseeececesccccveccsncscoacsscnsas
6~2 Design User Interface COMMANAS ..cceveecenccenocacccasacnss
6~3 DUI Command SUMMATY .eveeecscecscscccocssscccsascasansscses 6=5
6~4 PEI Command SUMMALYcsseessasscsosssocssasscscsscsannes 6-16
6~5 Process Display with MBNUcceeececescceaveccccacccones 6=25

o - I e e
r. . NN, - - S RN S T o

p

. FIGURE PAGE

[
o))

Viewspace versus Workspace in ADE .eceeocesaosccscsassnnass 6-33
ADE Command SUMMAYY cecssvesscssesscscessssassassscnssassssa 60=35
Architecture Symbols ...ceeecrieanasconrssscoasssccnssconess 6-36
Sample Architecture .iui..ciieicesssescsscssascscssssssaness 6=57
Sample LPT Generatad by Method Acevvsesscossccsccasaas 6=57
Sample LPT Generated by Method B ..eecveiecceacccncocncccns
Sample LPT Generated by Method C ..ceeerecercrccosccvccssns
Bnalysis User Interface COMANAS ..ceeecscvccccccssscsoases
AUI Command SUMMATY .ecceasccecssoccsscscansscsoscscssnconsas
DEFPLOT FOrm fOr ILEMS ..cevevctocascsosssssnsccsssacscscas
DEFPLOT FOrms fOY ProCesSS ..ceveeeececascccssescocscsassosse
DEFPLOT FOrmS fOY QUEUES .teveeerccccccecccsascscsosnnascnne
DEFPLOT FOorms fOr ReSOUICES .v.ceeeecoscscssssscsscocsssnnass
DEFPLOT Form for Variables ...ciiivececscecosssscccosssnanns
Sample PlOt .seieeecestsoveasososoacsescsascsnscsseansnsnssssssnse
Sample Form for Selecting PlotS ...ecevveesccssscccnnanncna
SaAMPle PlOt teveceeesaccenscsosesasssssssccssnsasasasconnsas
RUI Command SUNMALY cceecessvsoncscssossscsssasncsascssccnns
LUT Command SUMMALY ceeeecsessonscssscessssssasnaasccssassss 10=2
Library Utility Data Flow Diagramccececcosoceccreossss 10-3
Checkout Command SUMMALY +e-eeecsaesonssconsesasesonssscaes 106
Mergein Command SUMMAIY ..coessseesacsscasacaacssssesssasss 10-15
Mergeout Command SUNMAIY ceeecessccscscsovscssvsscassccssse 10-23
11-1 Initialization Report - Constants, Tables, and Global
Variables ...iececieacsscesssnssanasasasascsnsssnssssesenas 11=3
11-2 Initialization Report - Items and QUEUES ..vevsssscccaececes 1l-4
11-3 Initialization Report - Resources and Architecture Legal
Path Table ..veeievecacsoesscscscnssssssassssssssnnssscsns 11=5
11-4 Initialization Report - Actions and ProcesSSeS .eseeseceess 11-6
11-5 Initialization Report -~ Loads and SCENArio .cececesveessss. 1l=7
11-6 Constant REPOTL .eceesessserssoersssosccssssassaansonsseesse 11-8
11-7 Numeric Variable RePOIt cveeessececscssavecsssssassansasss 119
11-8 Non-numeric Variable REPOIteecssscsccososssossssnaasss 11-10
11-9 Ttem REPOTt cuverscesssrssonsocscoassassssssssenssnsssnssse 1l=11
11-10 ResSoUrce REPOIY ..eiccesssccrsoscnvessossssesnssnsoesssnss 11-13
11-11 Action REPOTt ..cvcececesosrosncansssssncsscssansesssessse 11=15
* 11-12 QUEUE REDOTL ceteescevcsorseososncsascssssscasasacnnssesses 11=17
11-13 Process REPOLL ..cececessosesesasssasascsesassscsnsesscass 11-20
A-1 Sample Batch Job SUDMISSION civieiesecesccessscscscesencas A-6
A-2 Sample Batch Job Submission with PlotScceeveescecnees A=7
D-1 Listing of Process MRS ..cievevessseccssensosccssescnsnsee D=5
D-2 Listing of Process NODEPROCccceoevssccnssosescscessse D=7
D-3 Listing of Process DESTPROC ..euvececessscesacosscasenseas D=9
D-4 Listing of Process CHANPROC. ..eesesasccvecssssnsascsannanse D-11

t ot

t
o= o
[}

[
(S)]
O

|
NN W00 0000 WL

|
o

[l e N e]

m\J\J\I\J\JTJ\J\J\)\JO"\O\

4
-
OO(I)\I\I\]\I\J\ITJ\I\I\IG\O\O\O\O\O\O\
N F = = WD 00 AU WK I WO O -

b
T
U W

xi

R A Tt AP S AL IO SR
- TN N T P EAT AT fa‘als

SECTION 1

INTRODUCTTION

1.1 PURPCSE AMD SCCPE

The Automated Interactive Simulation Modeling 3System (AISIM) provides the
1ser with the 3bilitvy *o do nigh level simulation of complex operational
and distributed data vrocessing systems. The nurpose of this manual is to
orovide the AISIM user with a comprehensive guide for the use of the AISIM
svster on a VAX 11 780 computer.

1.2 CORGANIZATION

T™1is manual is organized -to-providera straightforward reference document
‘or <he ATS™ user. Chapker T introduces this Aocument, detailing the
srganization of *his document, the decument conventions and applicable
documents Chaptey 2 is an overview of the concepts used in modeling and
simulation of systems using AISIM. Chaptex 3 contains a detailed
description of the AISIM modeling constructs. Chapeer 4 describes the
interface between the AISIM software and the host computer's time sharing
system, Chaptess 5 through 10 present information of the various system
user interface levels, including detailed descriptions of prompts and
commands. Chapeer 11 discusses AISIM simulation results and how to
interpret them. Appendix A presents operational procedures and other
information which is useful for the user to know but not mandatory for
using the system. Aprendix B lists simulation error messages with a
description of their meaning. Appendix C is a glossary of AISIM terms.
appendix D contains 3 detailed descriotion of the message routing submodel .
described in section 3.

1.3 DOCUMENTATION CONVENTIONS

The descriptions of AISIM commands given in this manual use the following
notations to define the syntax and fcrmat of the AISIM commands:

1. Commands shown in the format below are equivalent:
DESIGN
D
The latter is an abbreviation for the former.

2. Required parameters are enclosed in braces:

{ lanquage}

Optional parameters are encliosed in brackets:

{MNOXLATE]
Default values exist for all optional parameters.
The brace and bracket symbols are used only to define the
format. They should never be typed in the actual command
statement.

braces { }

orackets [|}
The symbols listed below should be typed in a command

statement exactly as shown in the command statement
definition.

apostrophe !
camma .
parentheses ()
period .

Words in lower case appearing in a command definition
represent variables for which the user should substitute
specific information in the actual commard.

EXAMPLE: If "database" appears in a command definition, the
user should substitute a specific name of a database
(for example, COMTACT) for the variable when the
comrand is entered on the temminal.

All upper case words and letters in a command definition, such
as a command name or a parameter name, must be typed as part of
the command statement.

All command names and associated nmarameters must be separated
from each other by the appropriate delimiter, as shown in the
command definition. Delimiters are either a comma or a blank
depending on the context. A blank is entered on the teminal b
pressing the space bar at the bottom of the terminal keyboard.

s.<

EXAMPLE: BACKUP [PROJECT (database))
If the optional parameter is used, it must be
separated fram the command name BACKUP by a blank (),

i.e.,

BACKUP PROJECT (contact)

1-2

Ad I EIAANL AR ard oalh atus sie o

When 3 comma is +o0 be used a3 ~he delimiter, it will be
specified as part of the command definition.

EXAMPLE: DEFPLOT {entity-type},{entity-name}

In this example the command rame DEFPLOT would be
separated fram the required oparameter {entity-type} by
a blank and the two required parameters would be
separated from each other by a comma, i.e.,

DEFPLOT R,resource
- 9. The references in this document to specific words which are
AISIM entities, will appear with an initial capital. This is to
distinguish the reference to an AISIM specific concept from a
common interpretation of the word.
EXAMPLE: Process - Occurrences of this refer to the AISIM
entity.
1.4 APPLICABLE DOCUMENTS

The following documents provide additional information r.levant to the
operation and use of AISIM:

AISIM Training Manual

AISIM Training Examples Manual

A RACHACHAIRA Lt tiat S S Sl Sod Sod Sud e) 3

SECTICN 2

AISIM CONCEPTS

The Automated Interactive Simulation Modeling System (AISIM) provides a
tool for the analysis of complex systems. The tool is designed for the
operations analyst or engineer as 2 workbench for investigating the impact
of system alternatives. AISIM provides a graphics language for the

- expression of systems, a database for storing a system's design and a
simulation capability for analyzing the system. AISIM is appolicable to
design analysis of hypothetical svstems and to the operations analvsis of
existing systems.

AISIM is a computer program that allows for the simulation of complex
systems by a user without the need for the user to do additional
programming. The program can be executed interactively by a user
cormunicating with a host computer through a terminal. By using the host
computar In an interactive mode, an AISIM user can use AISIM to obtain
timely data to support decisions on how a system is to function.

2.1 CHARACTERISTICS OF SYSTEMS MCDELED BY AISIM

AISIM supports the design and analysis of systams having any of the
following characteristics.

1. Procedural operations -- Processes in the system can be
described by a sequence of steps that describe the logic of every
operation (e.g., overator actions, operating system logic,
applications logic, man-machine interface, real time input
processing) .

2. Parallel Processing -- Any number of processes can occur
simul taneously.
L]
3. Shared Resources -- Some Drocesses require resources that are

contended for by other processes (e.g., two I/0 requests
contending for a single channel). CQueueing is reflected in the
degradation of the time required to complete processes suffering

resource contention (e.q., large queues behind bottlenecks in a
network) .

4. Operational loading -- The operation of the system is a
function both of its internal structure and of the envirommental
pressures on it.

5. Process comunication -~- Processes transfer data and materials to
other processes in the system (e.g., both message routing and

network control information communication can be easily
represented) .

6. Interconnectea netwcrk -- llerwork architectures consisting of
interconnected nodes can be represented in AISIM. System
constructs allow the user to define the routing of messages
through the described architecture. AISIM also allows for the
modeling of systems abstracted fram any particular architecture,

These characteristics are 3ener:c to a large class of systems including
military, computer, and incustrial systems.

2.2 MODELING

In scientific and engineering usage, 1 model is 3 simplified (or
idealized) representaticn of 3 systam that 1s advanced as a basis for
<alculations, predictions or further investigation. AISIM modeling fits
comfortably under this general characterization, but AISIM is especially
useful for the modeling of systems which incorporate parallel processing
(simultaneous activity) and networks. AISIM is particularly suited to the
modeling of embedded computer systems for command, control and
communication applications.

There are many applications of simulation modeling in this problem area.
AISIM models are representative, discrete event simulation models used for
predictive operations analysis., What this means is that entities in a
real systam are mapped onto AISIM entities which have a very close
functional relationship. AISIM entities respond to simulated conditions
much like the real entities do under actual conditions. This is in
contrast to functional modeling where the real svstem is described in
terms of equations in differential calculus. The amphasis in
representative modeling is on describing the system.

Generally, determmining and clearly describing the system is the first
major obstacle a modeler must confront. If a system is in the design
ohase, then no data is available on how it will perform or what the major
bottlenecks will be. For existing systems these characteristics may be
known but the combination of events that cause problems may not be
understood. In both cases, much can be learned fram modeling the system.

A key concept to keep in mind 1is that models are a2 simplified description
cf a system. This implies that some elaments of the real system may not
be represented in the model. The challenge in modeling is to represent
all the eleaments of critical interest to the svstem dynamics in the model.
This requires some thought to the develooment of the model.

2.3 DESIGNING MODELS

A model should be carefully designed before being built. The key
activities addressed during the design phase are the following:

1. Understand the Model and Collect Relevant Data -- To model any system
effectively, a modeler has to xnow something about the system.
Building an executable simulation model requires that the systam have
an accurate and sufficiently detnailed description, A modeler must be

TP W B MRS

aware of the functiocns perfcormed in * 3vstum which effect the
dynamics of the operation. A modeler must also know the
characteristics of all the elements that perform work, create data,
control processing, interrupt normal operations and produce outout.
This data can be cbtained from design smecifications, hardware
specifications, zrevicus studies or empirical resting. It is
important to collect good data because -hat data becomes the
foundation of “he model.

2. Determine Model Boundaries -- Systems modeled by AISIM generally
consist of many subsystems. The problems caused by the cambination
of subsystem activities are of interest to the analyst. AISIM
provides varying levels of detail irn modeling a subsystem. Sametimes
the activity can be viewed as a black box. The flow of control
through this box can simply be represent=d by a delay. This type of
phenomena is modeled by AISIM with the Action entity. Other times,
the characteristics of a subsystem can de represented by a
mathematical function. AISIM has such a functional capability with
the EVAL Primitive and Table entity. If an activity is more
complicated, it can be cdescribed by log:c. In +this case, AISIM
allows the modeler to go to his own leval »f derail by building =z
Process. Setting the boundaries of an 2ISIM model is precisely what
the modeler does in deciding which of these constructs will be used
to model the elements of a system. A method of paper modeling
developed for software design is known as "structured design". This
method uses structure charts, hierarchical charts showing calling
sequences, to describe functional processing. This method has been
used successfully with AISIM, An alternate method would be to create
flow charts of the various systeam functions.

3. Determine Experimental Method -- A model allows an analyst to run
experiments on a system to predict how an operation will behave.
Before any effort is expended in building a model, the output of
simulation runs must be considered. Moni%ors can be designed to
provide data on the system's operation. Experiments can be designed
to validate the model.

. 2.4 CONSTRUCTING AN AISIM MODEL

2.4.1 Charting a Paper Model

In building a model, a modeler maps the elements of a system onto the
constructs of the simulation language. To do this, the modeler must be
familiar with the characteristics and relationships of both the simulation
tool and the real-world system. The mapping is not always clear-cut and
usually requires iteration. The modeler charts out what processing takes
place in a system, where resources are allocated, how processes
communicate and where activities initiate. This chart is referred to as a
paper model. It may be derived from an understanding of the system’s
functions and a graphical representation of its network. On the paper
model, the modeler names the entities in the system that will be modeled
by AISIM entities - Processes, Resources, Items, Queues, Tables, etc.

2-3

- " s & . -..-l --I - ..--.- -’y.-.- L ..‘q‘..n.. -
P I S R S AT N AR AT P AN

- AT e T s T e T s e s e
PRSI I P S
IR T

LA)L,

Bl L i g ey el g L A T a4 - AR G i an by g
- SR . IS A e AR A Su Rk 2 Al Al i bl Sl -l ol St ad A ATA A S ol e el ool SRR

2.4.2 Defining the AISIM Model

An AISIM model is built by defining AISIM entities to represent system
entities. This is done interactively on the computer. AISIM solicits
relevant data for definina all design entities,

2.5 AISIM MODELING ENTITIES

As mentioned earlier, a model is a description or abstraction of a real or
proposed system. To build a model with the intention of simulating its
operation, we must describe the model in terms which can be interpreted,
and operated upon, by the simulation system. That is, a system can be
modeled using a prose description; but unless it has some systematic
relation to a computer language, 1% would be useless as a computer model
because prose is ambiguous. AISIM uses a special set of terms to describe
systam structure and operation called AISIM entities. A modeler must
understand the meaning and use of these entities to build successful
models. These 2ntities are briefly discussed below. A detailed
discussion of =ach of -hese =ptities is orovided in section 2. Figure 2-1
alsc prevides further insights to the meaning, use, and relationships
between entities and other modeling constructs.

ENVIROMMENT
SCENARIO
mvocene (==
ALLOC
A Astign
TRIGGE RS SRAMOM
CALL
TAKE ARCHITECTURE COMP At

]y | CEd
| c.:bo

OEALLOC
DESTROV
[= 12 1 4
Evad
FaLE
D
LOEX
LOCOP
RO
PRIMITIVES REMOVE
i e RS G
RESLAR
N0
RAPEND
TREY
TRACS
UILOCK
L-ﬂ

Figure 2-1. AISIM Fntity Relationships

- P T U .. . “ e, - . A SR e \ .
. ‘,‘-’..,’\,.‘...'--'-..-. --.-"..‘-.-. .-_'_-." '_(‘\'.--"-.' T O i Rt o L T P T S R S R

AT N PR R A
R R AP AT AP AL AN, O N A e W

Constant - A Constant is 2 term whose value does not change
during, a simulation exercise of a model. Constants are used to
represent parameters that do not vary with time or in response
to the workings of the system being modeled.

Itam - an Item is a transient iata elament and is used to
represent messages (Cr materials or even pnysical objects)
flowing through the system.

Load - A Load is used to represent aspects of the world outside the
system that trigger the initiation of Processes. Loads
represent the normal burden, i.e., occasional Process
triggering, on a system.

Primitive - Primitives are logical constructs that represent
steps in the modeled system's operation. There are 25 different
Primitives each representing a different logical function. A
sequence of Primitives compose a Process. All Primitives are
listed below. The ACTION primitive has an Action entity
associated with it. The Action entity is defined below.

ACTION - (See below)
ALLOC
ASSIGN
BRANCH
CALL
COMPARE
CREATE
OEALLOC
DESTROY
ENTRY
EVAL
FILE
FIND
LOCK
LOOP
PROB

¢ REMOVE
RESET
RESUME
SEND
SUSPEND
TEST
TRACE
UNLOCK
WAIT

Process - A Process is a logical description (using Primitives) of
some or all of the operations, decisions or activities of the
system being modeled.

2~5

«cw e .
BRI L S o e
LIPS AR . s,

IR N e are sa ea o

Action - An Action, which is associated with the ACTION Primitive, is
used to represent the consumption of time for any action,
activity, decision, etc., “hat consumes time. The ACTION
Primitive is the only one that updates the simulation clock.

Queue -~ The Queue entitv ‘s used to model an ordered holding area for
2ne or mere Itams. A Queue may be used to model, for example, a
Job queue or a memory buffer, A Queue may be defined with a
maximum size parameter to0 model, for example, such limits as the
maximum number of messages that a buffer can hold before it is
overloaded. OQueues bear a default size of infinite.

Resource - The Resource entity is used to model the mechanisms
{people, CPU, communication lines, etc.) necessary to complete a
Process. Resourzes Jenerally have the property of being shared
among Processes. Performance of a Process can be degraded due
to contenticn for Resources.

Scenario - The Scenaric entity is used to model the various
enviroments 1in whicr : system must perform. A 3cenario
specifies the number >f neriods of a simulation run as well as
thelr length (which is uniform). The Scenario schedules the
initiation of Loads. It can also schedule the initiation of
Processes.

Table - A Table is 2 user-definable function with up to fifteen pairs
of data points, Tables may be defined as either continuous,
discrete or alpha. A continuous Table interpolates linearly
between numeric points. A discrete Table is a step function
coennecting numeric noints. Alpha Tables are used for
strucrturing data over non-numeric ranges and domains.

Variable -~ A Variable is a term whose value can change during a
simulation run, either by setting it equal to a mathematical

expression or ~hrough reassiarmment by the user between stages of
a simulation.

Keywords -~ The keywords ire system-cdefined variables which provide
the user with information about the current state of the
simulation.

|

R

ARSI AN A A il Y i A b A Al Aol S s S ath S N SR

SECTION 3

AISIM ENTITIES AND OTHER MODELING CONSTRUCTS

In this section AISIM's entities and othe- modeling constructs are
described in detail. For each entity, the parameters required to define
the entity and the means by which this data is requested from the user are
described. Included is mention of relations between the various AISIM
entities, where such mention is deemed helpful.

3-1

o e e e AT . -)
- » . - - . . - 3 - B - - - . . “

. - P P BV PR S I . L U TR S
" a . P KR T . RINR I . st et

o N e e e K OO “ K st e e e e T T e . . .
» “teN et . PR NPT . IS R Le, . R RS I . . e e SN

LIPS B P U W TP A TP DL TP SRl Ty W D A AR Y te % e 4 A R A R A T A
Ssbueintuiaeiinfdaties 2 o . U PRI W

P

DA AIRAA A A |

SCEMNARIO

3.1 SCENARIO

The Scenario entity is used to represent the var.ous enviromments in which
“he systam being mocd=laC must rers-rm. Together with the Load antity it
represents the ex<ernal st:muli on 3 modeled systam.

In a Scenario, tne user defines a collection of Loads and/or Processes,
together with schedule time and triggering priority for each. The ,
Scenario calls for *the initiation of activity over time by activating a
Process or Load at the corresponding scheduled time.

Scenarios are divided into periods whose length and number are chosen by -
the user. These reriods provide break points at which the user can stop 2

simulation to alter a variable or inspect the results up to that point.

There may be up to 14 neriods in a given Scenario. The form for the

Scenario is shown in figure 3-1.

:‘”"“'-' --.----

TTOULEE G- TIME RETITTTCITIT . TTME SRIIRT

Figure 3-1. Form for the Scenario Entity

Following is a description of the fi>»lds in %he Scenario form:
SCEMRARIO: Scenario name (1 %o 8 characters)
PERIOD LENGTH: Amount of time in each simulated period.
DESCRIPTION: Any user comment (O to 52 characters)
PERIODS: Mnamonic names ~an be entered in these fields

consisting of up to 3 cnaracters per name. The number of
fields containing characters determines the number of

SPOIN = =

. “oa . . - -
B Tt .
S T e e s T
AT PP NPT W SRR WAEIN, o s, W R

;n..-_
e
®
L
.
.
.
| AP N W)

R Rl A i Ao Aad ek St A Al Sell Sns Sl And Sl S e e ana a0

veriods in 3 sirulation, i.e., for each of the 14 fields
in which an entry is mecde a period is added to the total
simulation run. A Scenario can have 3 maximum of 14
periods.

TRIGGER: 1 «0 20 Process names or Load names; =2cn Process or Load
~amed causes the initiation of that Proc=ss or Load at
the scheduled time.

SCH TIME: The simulation time, from the start of the simulation, at
which the the Load or Process specified is to be
initiated.

PRIORITY: The priority the triggered Process is to have. Priority

<

is inverse, priority 1 oreempts priority 2. If a Load
name is entered in the trigger field, the corresponding
nriority field is ignored.

Note: Constants mav be used to define PERIOD LENGTH, SCH TIME, and PRIORITY.

Operation - A model database may contain more than one Scenario. However,
only one can be used in any simulation. The Scenario specified will define
simulation period length, and Loads and Processes to be triggered by the
Scenario. The total simulation time is the product of the number of periods
and the period length. The number of periods also effects the collection of
plot data points. (see appendix A.2)

Scenarioc entities are entered using the Desian User Interface EDIT comand (see
section 6.1.4).

PR P e . A TR T f e el
IR IR AR T A e RIS SN
B PR

e e et e, -, ~
PRSI Y I Ty Y W & Y

AP L U T U S
(O AT .
-~ . - . .

ST -~ R
ALY CFS P N A R A A R

T P P gy

LOAD

3.2 LOAD

The Load entity is used with the Scenario entity to periodically trigger
Processes at specific nodes in the architecture. The Load describes which
Processes will be initiated and at which nodes. An instance of the Load is
triggered simultaneously at each of cthe specified nodes. This entity can be
described in the following way: for each Process in the Load, initiate up to
the maximum number at an interval detemmined by the schedule method, and
initiate them at each of the specified nodes. The form for the LOAD entity is
shown in figure 3-2.

SRITEAS WAL e SHMTT

ur TITs

Figure 3-2. Form for the Load Entity

QIR

Following is a description of the fields in the Load form,
LOoAD: Lecad name (1 *o 3 cnharacters)

NODES: If an architecture is used, one to eight nodes in which the
Processes specified will take place. Otherwise leave blank.

DESCR: Any user comment (0 to 53 characters)

PROCESS: 1 to 5 names of Processes which the Load triggers according to
schedule.

MAX #: Maximum number of times this Process is to be triggered in
each execution of the Load.

SCHMTD: Statistical function to be used to determine the time between

Process triggerings. It can be any of those described under
SCHEDULE METHOD (see below) .

3-4

MEAN: Depending upon schedul 2 merthcd, MEAN is used to Jdetermine the
interval between each *riggering of a Process. In general
*his is the mean inter-arrival %ime.

DELTA: Ceverding uoor schedule metnod, DELTA is used to determine the
Jevianion 3pcut the mear 7Y the Interval betwWeen triqgerings
of a Process.

PRIORITY: Priority with which the Process is to be executed. Priority
is inverse, or:icrity 1 preempts priority 2. Priority is used
to determine which Process will be allowed to allocate a
Resource when 1t is contended for by two or more Processes

H : (see ALLOC Primitive, section 3.9.2).

SCHEDULE METHODS:

START - MEAN: inapplicable; i.e., leave field blank
DELTA: inapplicable; i.e., leave field blank

All Processes up %0 “re maximum nurber are initiated at the
same clock time, the start nf the Load. This can be used to
simulate pre-loading.

INTERVAL - MEAN: time between initiations
DELTA: 1inapplicable; i.e., leave field blank

One Process is initlated at every interval as defined by MER2N,
The first starts at the time given by MEAN with respect to the
starting time of the Load.

POISSON - MAX #: mean number in a PERIOD
MEAN: inapplicable; i.e., leave field blank
DELTA: 1napplicable; i.e., leave field blank

Processes are scheduled randomly by a Poisson process. The
time between Process <riggerings is exponentially
distributed. The MAX # parameter defines the mean number for
a PERIOD. PERICD length is defined in the Scenario.

TPy

EXPONENT - MEAM: mean time between Process triggerings
DELTA: inapplicable; i.e., leave field blank

The time passing between Process triggerings is exponentially
distributed.

LOGNORML -~ MEAN: mean time between Process triggerings
DELTA: standard deviation of time between Process triggerings

The time passing between Process triggerings is lognormally
distributed,.

NORMAL - MEAN: mean time between Process triggerings
DELTA: standard deviation of time between Process triggerings

P
S e e e M AT
s g AN SN

d T

The time passing between Process triggerings is nommally
distributed.

UNIFORM

MEAN: mean time between Process triggerings
DELTA: range about the MEAN

The time passing between Process triggerings is uniformly
distributed. The DELTA parameter specifies the difference
between the largest possible time between Process triggerings
and the MEAN time.

ERLANG - MEAN: mean time between Process triggerings
DELTA: order of the distribution function

The time passing between Process triggerings is Erlang
distributed. The order "k" is given by the DELTA.

WEIBULL -~ MEAN: scale parameter.
DELTA: shape parameter

The time passing between Process triggerings is Weibull

distributed.
GAMMA - MEAN: mean time between Process triggerings
DELTA: k

The time passing between Process triggerings is gamma
distributed.

Operation - a Load specifies a cluster of Processes to be triggered according
to 3 scheduling method and a priority.

Relationships - Loads are part of Scenarios and specify Processes to be
triggered and nodes in which they are to be triggered.

Load entities are entered using the Design User Interface EDIT command (see
section 6.1.4).

~v—

3.3 ITEM

The Item entity is used *+o model transient data elements that "flow" through a
systam. These data 1t=ms, which, by the nature of their varying attribute
values, permit Zdata Zdevendent decision making and timing.

Items can be originated, terminated and passed through the system from one
Process to another through the Primi+tives CREATE, DESTROY, CALL and SEMD.
Items can also be placed on and removed from Queues via the Primitives FILE
and REMOVE, and pointed to via the Primitive FIND. The form for the Item
entity is shown in figure 3-7.

Figure 3-3, Form for the Item Entity

Following is a description of the fields in the Item form.
ITEM NAME: 1 *o0 8 character name of Item
DESCRIPTION: Any user comment (0 to 53 characters)

NAME: 1 *o 8 character name of an attribute of Item. An Item
ca2n have up to 15 user-defined attributes.

VALUE: The initial value to be assigned to the corresponding
attribute (integer, decimal, or character); if a name, it
must be = defined Process, Resource, global Variable,
Constant, Item, Queue, Table, Action, keyword or alpha
literal.

NOTE: All Items have two i-plicitly defined attributes, TAIL and PRIORITY.
TAIL is the number of the I“am created, and PRICRITY is the priority of the
Process that created the Item. The TAIL attribute can be used for Item
matching (see SEND Primitive).

R A A e s s Sea A den e e BAen ey 2 V'v’

Operation - An Item is created for each occurrence of the following:

a. a CREATE Primitive that is executed - used to model transient data
elements

b, a SEMND Primitive that is executed in a Process which does not have an
Item of the specific name attached at the time.

An Item is terminated only when the DESTROY Primitive is executed.

Attribute values are assigned at the time of creation.

Relationship - ~'~ -ttributes are used by Process Primitives and attribute
values can be modified by the ASSIN Primitive. -

Item entities are entered using the Design User Interface EDIT command (see
section 6.1.4).

"o - o e e L e e e -. . L T ST e T e ml s m te m e A e . . - a .
-« \. St e, e o, K .. .- -‘ - [ERFEI -_. PR IR KRS RIS .‘_ -.. LIS -.‘_‘ . - ~ o a0 S
» PRI \ - N e CaN -

. NN .
K o ot .
PRSI IR WA W O - _._.‘-.-‘ -L.Ln--! ;_.-.\‘.- \,- PO J

RSt st Shin Jiu s Shai Jiuge 20 ok o ‘—1

USER DEFIMED QUEUES

3.4 USER DEFINFD QUEUES

A Queue is a global entity used to represent an ordered holding area for
Itams.

When a Queue is defined, a maximum sSize parameter is specified (the default is
"infinite"). This allows Queues to model finite storage devices that have a
limited capacity (e.g., a storage bin, a computer job scheduler). Once the
value is defined, it may not be changed and thus this parameter must be either
a numeric value or a defined Constant.

Queues are manipulated by Processes through the use of the FILE, FIND, and
REMOVE Primitives. An Item may be placed on a Queue, if space exists, by
using the FILE Primitive, specifying one of four location parameters: FIRST,
LAST, BEFORE and NEXT. The former two parameters denote :the end points of a
Queue, the first and last slots. The latter two are location parameters
relative to a Queue pointer (see below). 1If no space exists on the Queue, the
Process which is executing the FILE Primitive is suspended. This condition is
known as Queue blocked. In this state the Prccess waits until space becomes
available on the Queue. Waiting for space on a Queue is by a first came first
served discipline.

An Item may be taken off the Queue by using the REMOVE Primitive and
specifying a location parameter (i.e., FIRST, LAST, or NEXT, where NEXT means
the current Item pointed to by the Queue pointer). After an Item is removed
fraon a Queue, it may be sent, destroyed, or otherwise modified.

An Ttem may not be modified, sent, or destroyed while it is on a Queue. The

same Item instance may not exist on more than one Queue. Multiple Processes
may access the same Queue.

A Queuve pointer is maintained for each Process which references a Queue. This
pointer contains the address of the entity that the Process is addressing in a
Queve. The contents of the Queue pointer is determined by rules described
below and in the sections on the Primitives FILE (section 3.9,12), FIND
(section 3.9.12) and REMOVE (section 3.9.17):

1. The pointer contains the address of the last entity found with a FIND
Primitive; otherwise,

2. The pointer contains the address of the last entity filed with a FILE
Primitive; otherwise,

3. The pointer contains the address of the successor of the last entity
removed with a REMOVE Primitive with a NEXT option.

The REMOVE and FIND Primitives access a Cueue and set the value of the local
variable referenced in the Primitive. This means that when a FIND or REMOVE
Primitive is executed, the value of the local variable could be set to 0.
This occurs under the following circumstances:

¢ 3-9 |

L_‘:_-‘.. T e S e e e T T A A A e et e e s L s e A
T R LN RS RO S s S e e PN

. sttt e et . «®a " m « et ety
T il T ML LA S S, LI LI S AP,) >

.’
i
!
F
b
|

e e e oa e o o ans o

»

Rl At St gt

1. A REMOVE 2rimitive attempts to remove an entity from an empty Queue.
2. A FIND Primitive accesses an anpty Queue.
3. The MEXT or 3EFORE Itam in 3 Queue does not exist.

The form for *he Jueue =ntity 1s shown in figure 3-d.

Figure 3-4, Form for the Queue Entity

Following is =2 description of the fields ‘n the Queue form.
QUEUE: 1 to 8 character name of Cueue

SIZE: An integer value of 1 to 8 dlglts a defined Constant entity, or
the word INFINITE

DESCR: Any user camment (0 to 53 characters)

Relationships - Queues are used to hold Items. Queues are manipulated by the
FILE, FIND, and REMOVE Primitives.

Queue entities are entered using the Design User Interface EDIT command (see
section 6.1.4). Attributes associated with Queue entities are described in
section 3.12.

See section 3.5 for a description of system defined queues.

At St S hate S0ge

SYSTEM DEFINED QUEUES
3.5 SYSTEM DEFINED QUEUES

3.5.1 States Associated wirh Resources

Associated with each Resource entity are four simulation states upon which
statistics are kept. Three of these states apply to Resource units and one of
the states applies to Processes. Rescurce units can be in one of the three
states idle, busy, and inactive. If a Process is waiting for a Resource unit
which is unavailable, the Process is in the wait state. Resource units which
are idle or inactive are .ccounted for by counters associated with the
Resource. Busy Resource units are kept on a system-defined queue called the
busy queue, and Process which are waiting for Resource units are kept on a
walt queue. Resources and Processes are placed in these states during the
simulation as follows:

Resource units are idle while they are unallocated and available to
Processes. Resource units are in the idle state: (1) at the
initialization of the simulation, (2) when removed from the inactive
state (by the RESET Primitive) or (3) when removed fram the busy gueue
(by the DEALLOC Primitive).

Resource units are placed on the busy aqueuve while they are allocated by
save Process through the ALLOC Primitive. They may be removed fram the
busy queue (1) by being deallocated with the DEALLOC Primitive or (2) by
being set inactive by the RESET Primitive.

Resource units are in the inactive state when they are not available to
be allocated by Processes. Resources may be placed in this state (1) at
the initialization of the simulation, (2) from the idle state by means of
the RESET Primitive, and (3) fram the busy state by means of the RESET
Primitive.

The wait queue holds Processes that are suspended for lack of an
available unit of the needed Resource. A Process is placed on this queue
when either (1) it attempts to allocate the Resource (with the ALLOC
Primitive) that is held by another Process of egqual or "higher" priority
or (2) it loses a Resource to a "higher" priority Process,

The relation between these states is illustrated in figure 3-5.

During a simulation run statistics are kept on the activity of these states.
These results are presented in the simulation's Resource report. The user can
access the mumber of Resource units or Processes currently in each of the
states using attributes described in section 3.12.

3-11

Eiali N adhh o aladre

RESE™ (+)

INACTIVE BUSY
RESET (-) \j DEALLOC -

RESET (-) + DEALLOC
RESET (-) + UNLOCX

Figure 3-5, Resource States

3.5.2 Cross Reference Sets

In addition to the queues associated with Resource contention, there are eight
system defined queues called "cross-reference sets". These queues correspond
to the sets of names of the following AISIM entities:

1. Resource names

2. Queue names

3. Process names

4., Item names

5. Action names

6. Table names

7. Constant names .

8. Variable names

What this means is that an AISIM modeler can write Processes which perform
some function on each entity defined in one of the above sets.

The FIND Primitive accesses the set of names of an entity type by specifying
the name, e.g., Resource, Item, Process, as the Queue field reference in the
Primitive.

3-12
R .,"-'~‘.- I T TS N N N T L e et

e AR R N ...,-\~. 5 .‘_.... ‘._ N ._h..'._\\ ..‘ ..\ \ .‘ \ SR R R ;.\..\. W :_..-\.\.‘:..-'--. .

IO P -A---~)‘1L1~-~fL‘A'L' PR

L ae o o

Dht g o an sa s an s e asieess.

LA e R

RESOURCE
3.6 RESOURCE

The Resource ontity is used to model the mechanisms regquired to perform a
Process. "Mechanisms" in this context can be computer processors, memory,
cammunications channels, sucovort personnel, documents, etc.

Queuveing for a Resource occurs only within a Process and, in particular, only
where an ALLOC Primitive is used. In other words, if no ALLOC Primitive is
used there will be no queueing. If no Resource is used (allocated) within a
Process, the Process can be executed in parallel (simultaneously) by any
number of concurrent requests and the model will represent only time delays
associated with the ACTICN Primitive.

When a Resource is used (allocated) by a Process, there can be only as many
concurrent executions of the Process as there are Resource units available.
For example, if the capacity of a Resource is one, then any Processes which
allocate that Resource will be executed serially (one at a time). Execution
concurrency is controlled only between the allocation and deallocation of the
Resource (i.e., if the ALLOC Primitive is the second Primitive in a Process,
the first Primitive can be executed concurrently by any number of requests
whereas the ALLOC Primitive can be executed concurrently by only as many
requests as the Resource has units available).

If no Resource units are available (i.e., idle or presently allocated to a
lower priority Process) when an ALLOC Primitive is attempted, the Process'’
allocation request is merged onto a wait queuve associated with the Resource.
How the request is merged depends on the priority of the request. The request
is merged and sorted by inverse priority (priority 1 preempts priority 2).
Within priority “he sorting is done first-in-first-out. When deallocation of
the Resource (by some other Process) has resulted in enough units to satisfy
the requests, and the request has moved to the top of the wait queue, then the
request is removed from the queue, the zllocation is performed, and the
Process is executed. Note that a deallocation of several units may result in
several requests being removed from the queue simultaneously. For allocation
requests of multiple units, the user can specify whether the units are to be
allocated as they become available or only when all units are available at the
same time.

1f, when the ALLOC Primitive is attempted, there is a lower priority Process
possessing the desired Resource units, then the higher priority Process will
"steal" those units. The lower priority Process will be suspended while it
waits for Resource units. It will be placed on the wait queue but its
seniority is based upon the time of its first allocation attempt, not the time
it lost its Rescurces.

The Resource entity provides the most interesting and useful simulation
results; e.g., delays, bottlenecks, utilization percentages, and traffic
statistics. Therefore, the use of Resources should be carefully designed from
both the standpoint of model credibility and the specification of required
simulation output.

o " L. ST e, L . PR . - L. - . . Vet e e e T el e . .
DA AP P I S A A AT AP IR RPN S SRt N DS . L. T T P M ST S S SR St S Rt
ey . ettt e o el ol " PRSP, TR st e s . AL A o
ala ot atatm®a®a .

-y

CRRE AL A M A i NG A o s e st aus i st e

The form for the Resource entity is shown in figure 3-6.

Figure 3-6. Form for the Resource Entity

Following is a description of the fields in the Resource form:

RESOURCE NAME:

TOTAL NUMBER:

INITIAL NUMBER:

DESCRIPTION:

'NAME:

VALUE:

1 to 8 character name of Resource

Max imum number of units of the Resource that can be
allocated (integer or named Constant).

Mumber of units available for allocation at the start of
the simulation (integer or named Constant).

Any user comment (0 to 53 characters)

1 to 8 character name of user defined attribute
Cost is a default attribute to document the cost of the
Resource.

Initial value to be assigned to an attribute; can be
single precision real or integer number, or the name of
a defined Variable, Constant, Process, Item, Resource,
Queue, Action, Table, or a keyword or alpha literal.

Operation - Resources are initialized at beginning of simulation to the values

given above.

L L T
SR a o e

N - Ol A Geal aeea ds anie o a a-a g Y
. oA A AT AR AL At Al A S Bl S e e Su S Setecut ot “RAe

P

LA W A A At e TS s Al Tl Al Sl Bk Andh Aol ol Yot -2y

Relationships - Resources are .sed by Processes with the ALLOC, DEALLOC,
RESET, LOCK, UNLOCK and TEST Primitives.

Resource entities are entered using the Desian User Interface EDIT command
(see section 6.1.4).

3-15

e T e AT el e AT e et -'.'-'._'.".'..'.‘.' R LN AN MURE AN
ettt DR LR T TSt et SN PN S
L PR PR TN PR R WO W SW W W v P

NCANC

DTS
2

.

ACTION

3.7 ACTION

The Action entity represents time consumption for any activity, decision,
etc., that consumes time. This entity functions in conjunction with the
ACTION Primitive. For eacn defined Action entity, statistics on the time
consumed by the associated ACTION Primitive are collected for the simulation's
Action report. For this reason, each Action named in an ACTION Primitive is
given a separate definition outside the Process in which it appears.

In the form for this definition, the ACTION field contains a name identical
with one that appears in a Process. The field CLASS is optional and is
intended as a means to document what kind of activity 1s taking place or
who/what is performing the action (viz., man/machine). DESCRIPTION is used
for any mnemonic. The form for the Action entity is shown in figure 3-7.

e

Figure 2-7. Fomm for the Action Entity

Following is a description of the fields in the Action form:
ACTION: 1 to 8 character name of action
CLASS: user defined class
DESCRIPTION: Any user comment (0 to 53 characters)
Relationships - Actions are referenced by the ACTION Primitive.

Action entities are entered using the Design User Interface EDIT command
(see section 6.1,4).

3-16

Lo et Tt T,
. . . . o . - - - R L - . - - . 0 - . - . . - DU N T T R MRS . .. -
P IR RIS SR I JIPNIPAL FUCIREIATIN T, WA ST IR) Seisbundaiiinied A SR R S A, DA AR

PROCESS

3.8 PROCESS

The Process entity is used to represent the sequential logic and
activities, operations, functions, etc., of the modeled system. Processes
are camposed of Primitives, each of which represents a step in the
function being modeled by the Process. It is at the Primitive level that
Resources are allccated and cdeallocated, time is consumed, decisions take
place, etc. .

In the graphic representation of a Process, the Primitives are flanked at
the top and bottom by figures labeled START and END. These figures
represent the logical entry and exit points for the Process.

Processes are initiated by (l) Scenarios and Loads (within Scenarios) and
(2) by other Processes through the CALL and SEMD Primitives. Once
initiated, the execution of the Process depends upon the availability of
the Resources that the Process references through the ALLOC and DEALLOC
Primitives.

There are three types of Processes: parameter passing, Item passing, and
standard. Each differs in how it is triggered.

A parameter passing Process is one that takes values of local variables
fran another Process as inputs and/or returns the values of local
variables to the other Process as outputs. Such Processes can be
triggered only by a CALL Primitive and it is the calling Process which
sets up the relation for the values given and returned (see CALL
Primitive, section 3.9.5). The given and return values can be numerics,
string literals, keywords, the names of Iteams, Queues, Resources,
Processes, Tables and Actions.

An Ttem passing Process is one that is triggered by having Item(s)
delivered to it from other Process(es) through the SEND Primitive. The
required Items need not be delivered from a single Process; the sending
Processes may be as many as six, but the Process will not execute until
all of the Items indicated in the definition are delivered.

A standard Process is one which neither requires Items nor is given (or
returns) parameters. It may be triggered by either a CALL Primitive from
another Process or through the Scenario or Loads.

When a Process is defined, the node in which the Process is to execute is
specified. If the Process can execute in any node, or if there is no
architecture, ALL can be specified. Generally, when a Process is
triggered, it executes in the same node as its parent, or when a Process
is triggered from a Load, the Load nodes specify where the Process is to
execute. However, if a Process is triggered from a Scenario, the node
specified for the Process is the one in which the Process executes. The
node specified in the Process definition is also available to the user
through the SNODE keyword (see section 3.16).

3-17

The 1nitial fomm Icr the Prccess antity s shown in figure 3-8.

INTID eCiZMe TIR SARAMETER 311w
INTIR SITEM® FOR [TEM P4S51NG

INTIR MCTD " TOR STANDARD PROCIC:

Figure 3-8. Initial Form for the Process Entity

Following is a description of the fields in the initial Process entity

form:
PROCFSS NAME: 1 to 8 character name of Process
NODE: architecture node in which this Process is to

execute (if its execution is restricted to a
specific node; ALL in this field indicates the
Process may execute 1n any node)

ATTRIBUTES ATTACHED: VYES or NO to indicate whether the Process has
attributes.

PROCESS DESCRIPTION: O to 53 alphanumeric character description.
START BLOCK TYPE: (STD, ITEM, PARM)
To define an Item passing Process the user enters "Item" in the START

BLOCK TYPE field. The user will then be presented witn the form shown in
figure 3-9.

i AL e sl weezas 2w o) I

Figure 3-9. Form for a2n Item Passing Process

& 1-13
L.

TTTTAT T

PR S S e R . N -~ . . . - . . - . - "
ML R S WAl TP AT Wl Syt VO o, I S, JP LI WL AP PR SO DR RN - N

A T TN T R T T R PR TeR——y

This form is for providing a list of the needed Items. The Items received
by each must be of distinct types.

The field concerning the matching of serial numbers asks whether the TAIL

numbers (which is a default attribute of every Item) must be the same for

all the Items in the Process. T£f the vser enters "Yes" in this field, the
Process will not execute until it has received Itams of the specified type
to which the same TAIL number attribute has been assigned.

To define a parameter passing Process the user enters "PARM" in the START
BLOCK TYPE field. The user will then be presented with the form shown in
figure 3-10.

Figure 3-10. Form for Parameter Passing Process

This form is for providing the names of the local variables to be given
and returned to any Process that calls 1t through the CALL Primitive. The
CALL Primitive must contain the same number of entries in its given and
return lists as the called Process, If the CALL Primitive does not give
or return all the necessary values, an execution error will occur
indicating a disagreement in the number of values.

To define a standard Process the user enters "STD" in the START BLOCK TYPE
field. Since no inputs are relevant to i*s execution, there is no
secordary form for the definition of a standard Process.

Figure 3-11 is a typical flowchart representation of a Process. This
graphical representation of the logic of a Process is presented to the
user during the design of an AISIM model.

Relationships - Processes are constructed from Primitives. Resources are
used by the Process through the ALLOC, DEALLOC, RESET, LOCK, UNLOCK, and
TEST Primitives. Time is consumed by the ACTION Primitive. Processes are

initiated by Loads, Scenarios and by other Processes through the CALL and
SEND Primitives.

Process entities are entered using the Design User Interface EDIT command
(see section 6.1.4).

3-19

L S -

LR N T SN e et et

Te T e e e e - - e R g e P
PR T e T e e e T T e T e RS
" F P W AT WA P ST VL W AL VA YR WACRE WA S W v o o Wi

S e et L T T 3 >
P ST W . o el

-~

-

ASRASL A ANt S Srie A2 e S 4 \a 4 S0 A0 Aa dian 44

TOANSHITTING EIIRSET T STIIILR

START eom

TERNCNIT w0

[; INTRIOUCE %55 INTD IVSTEM .

o
' | COMRATE ANION WRIER

w1

¥
;
2

. chmi APHA TINES AVERRGE

1T OEILRGE (BT

it TILTULATE TRANSHIT T

PLISEERNS &

1] "IN IONCUMED TRAMCRITTING

P COMOWFFER Lo ITRE YOS N MUFFRR

! TEALLOC BuF!
RELEASE RESOURCE BUF! : UNTTS

Figure 3-11. Sample Process Diagram

3-20

L R T
MR T
ata *na' a®,

U
.

AR .
a e SNt ot . N

NGRS A P A e P s Gagh Joste laess s e g e diCHaat it Bk et s e Tk A i e 3

PRIMITIVES

3.9 PRIMITIVES

Primitives are the constituent elements of Processes and are used to
characterize procedural steps bv sequential logic. AISIM offers a list of
25 Primitives. Although limited in number, the Primitives have been shown
to represent all logical operations for computer system modeling. The
Primitives can be grouped into nine functional categories. These
categories are as follows:

Process Execution Control

CALL
SEND
SUSPEND
RESUME
WAIT

These Primitives control the initiation and seaquencing of Processes.

Branch Control

COMPARE
BRANCH
ENTRY
PROB
LOOP

These Primitives govern the internal branching in the logic of a Process.

Item Handling

CREATE
DESTROY

These two Primitives govern the introduction and elimination of a system's
transient data elements,

Time Consumption

ACTION

This Primitive represents the consumption of time through some activity,
decision, etc.

Mathematical Operations

EVAL

This Primitive governs calculations, invoking standard mathematical
functions amd operations or making use of user-defined Tables.

Adiar o Jhohs Bl B

R St Sk Sy Shede S 1

Resource Allocation

ALLOC
DEALLOC
RESET
TEST
LCCK
UNLOCK

v
T
Wi

1 These Primitives govern the use of Resources.

Queue Manipulation

FILE
FIND
REMOVE
These Primitives govern storage and retrieval on Queues.

Variable Assigmment

ASSIGN

This Primitive governs the assigmment of values to Variables or Attributes
(both numerical and non-numerical).

Debugging
TRACE

This Primitive has the special function of creating a record of the
sequence of Process Primitive executions which takes place during
simulation. It is used for debugging and validating a model.

Figure 3-12 shows the graphic representation of each Primitive, and
following is a description of the meaning of each Primitive and the
parameters necessary to define each, Primitives are entered using the
Process Editor Interface of the Design User Interface (see section 6.2).

3-22

ST S

. Rt UL P G AL AR SIS A S AT A AT A A A SN
/ \
ACTION LOCK LOCK
i R
wLoc
H ! TS ALLOC LoP
T weioRlY “s
1S ASSIGHED O ASSiON <’ > PRaB
[
N BRANCH fiest
—0 FROn RENOVE
clven AL RETUN
CALL RESET
1" _ RESET
If TRUE
COMPARE
an
/ Y
CREBIES CREAIE
Send 10
‘>l‘ ’ SEMD
A SUSPEND
KSTROY S| DESTROY
ot
__—-—-: O(_'!L<> TEST
o— ENTRY
TRACE, - e
EvaL

FILE UNLOCK UNLOCK

wAlTY

© [§

J

oprasentatiors of Process "rimitives

(¥}
9]
fay

Figure 2-12. Craphi

3.9.1 ACTION

PRIMITIVES / ACTION

The ACTION Primitive represents the consumption of time for an activity

that consumes time.

The ACTION Primitive is used to model the time to

perform some real work event such as a man's activity or a machine's
activity, The time consumed by an ACTION Primitive is determined
according to the selected distribution function (described below). The
form for an ACTION Primitive is shown in figure 3-13.

LEIMETERD SIR Y

v

l-"

it O
o

Figure 3-12.

Form for an ACTION Primitive

Following is a description of the fields of an ACTION fomm:

ACTIOM MAME:

METHOD:

MEAN TIME:

DELTA TIME:

A reference to a defined Action entity

Distribution function type, which may be: CONSTANT,

EXPONENT, LOGNORML, NORMAL, UNIFORM, GAMMA, ERLANG or
(The randam number seed used for statistical
functions can be controlled by the user in the AUI.)

WEIBULL.

Typically specifies the average duration time of the
Action. This parameter varies in meaning depending on
the METHOD selected. For CONSTANT, it specifies the
exact duration value. For WEIBULL, it specifies the
distribution's scale parameter. For all other
methods, it specifies the mean duration.

This parameter varies in meaning depending on the
METHOD selected. Typically it specifies the
variation, about the mean, in the duration times.

Specifically:
CONSTANT ~ inapplicable (i.e., leave field blank)
EXPONENT -~ inapplicable (i.e., leave field blank)
LOGNORML - standard deviation
NORMAL ~ stamdard deviation

3-24

AAJRNIR i e St i Bt il s Bagh Sbds Jhefe Ml R e Seotde T in

UNIFCRM - range apbout the mean (i.e., the
difference between the largest possible
duration and the mean duration).

GAMMA - K

ERLANG - >rder of distribution function

WEIBULL

shape parameter

COMMEMT: Any user comment.

3-25

- PRI
. e PP S
R T e e et e e Y e
LIPS IPEAP ISP AL PRSP) - 3

A AL S e LI S i DA A it A ikl AadSul SnA Al Stk Sadih Siul Sune ¥ e e e e W R TR NN .w.—"v;vvv(“g-v.'w.'-_'-'-

3.9.2 ALLCC

PRIMITIVES / ALLOC

The ALLOC Primitive indicates the allocation of (request to use) a
Resource which 1s needed by zne Process. Whether a Resource requested by
“he ALLOC Primitive is ac+-ually obtalned py a Process cepends on a number

of conditions, as described in
3.6. If a Resource unit is in

allocated to the requesting Process.

rthe section on the Resource entity, section
~he idle state, it is availabie to be
1f the Resource is busy, then

allocated Resource units are checked to see 1f 3 Process can be preampted
oy priority (priority 1s lnverse ~ priority 1l preempts priority 2) unless

the Rescurce 1s protected with
Primitive 1is shown in figure 2

Figure 3-14,

Following 1s a description of
ALLOCATE RESOURCE AME:

NUMBFR OF UNITS REQUESTED:

PARTTAL/ALL, ALLOCATICM:

ALLOCATION PRIORITY:

TOMMENT:

2 LOCK primitive. The fom for the ALLOC

-14,

Form for the ALLOC Primitive

the fields in the ALLOC form:
3 reference to a Resource

The number of Resource units to be
allocated.

Tis specifies whether the Resource units
will be allocated as they becane available
(PARTIAL) or only allocated simultaneously
when they are all available (ALL).

The pricrity to be used to determine which
Allocation request will be satisfied in
rne case of Resource contention. SPRIORTY
1s the default and evaluates to the
vriority of this Process.

Any user comment.

S ST TN, DSt S At Sl St S M bl Anth b ol Ae gt

T r— . i v v v -
N Cidain \ [R A Ar - S LS YT T T e v T

PRIMITIVES / ASSIN

3.9.2 ASSIN

The ASSIGN Primitive is used to set the value of the following references:

2. a local (to the executing Process) variable

3. the attribute of an Item (currently attached to the Process)

k 1. a global variable
)
b
p
4
]

4. the attribute of a Resource
5. SCNODE (see section 3.16)
6. the attribute of a Process
Values that can be accessed for the assigmment are:
1. signed, single precision, real or integer numbers
2, SCLOCK (see section 3.16)
3, global Variables or Constants
4. local variables

5. Resources with any of the qualifiers MWAITQ, NBUSYQ, NINACTQ or
NIDLEQ (see section 2,12)

6. Item attribute values

7. Queuve qualifiers NQUEUE or TQUEUE (see section 3,12)
8. Resource attribute values

9, Process attribute values

10. an Item name

11. a Resource name

12. a Process name

13. a Queue name

14, a Table name

15. an Action name

16, SNODE (see section 3.16)

17. SNXTNODE (see section 3.19%)

18. SLINK (see section 2.16)

19. STASK (see section 3.16)

20. 3CNODE (3ee secticn 3.16)

21. an alpha literal (first character 1s S) (see section 3.15)

The form for the ASSIQN Primitive is shown in figure 3-1S5.

[~ -

., Te
‘ - ? ‘_

SN
e

Figure 3-15. Form for the ASSIGN Primitive

In the form, V1 and Ql are used to reference the current value, and V2 and
Q2 are used to reference the value being set. For accessing values such
as local variables, the simulation clock, etc., only the V" fields need
to be used. If the user is accessing an attribute of an entity, such as
an Item, both the "V" and "Q" fields need to be used. The "V" field
contains the name of the entity (Item, etc.) being accessed, and the "Q"
field contains the name of the attribute of the entity whose value is
desired or being set.

Following are examples of some typical entries:

V1l: Item V1: Item V1: Variable
Q1l: attribute Ql: attribute Ql:
V2: Item V2: Variable V2: Item
Q2: attribute Q2: Q2: attribute
V1: Variable V1: Constant V1: Constant
Ql: 0l: nl:
V2: Variable V2: Item V2: Variable
Q2: Q2: attribute Q2:

COMMENT: Any user comment.

Note that it is the entity specified by V2 and Q2 that takes on the new
value specified by V1 anmd Q1.

3-28

L Tt e 4 — -

P Pr—

PRIMITIVES / BRANCH

3.9.4 BRANCH

The BRANCH Primitive indicates an unconditional branch to a named entry
point. It is used fcr Process execiu*icn sequence contral, The form for
the BRANCH Primi<ive is shown in figure 3-l16.

Figure 3-16. Form for the BRANCH Primitive

Folowing is a description of the fields in the BRANCH form:

LABEL: The entry point to which the Process execution is to go
(which must be defined by an ENTRY Primitive).

COMMENT: Any user comment.

3=29

Saae Ay Wy R T Coal-Sandl Bl Mgk a gt JArab e At JE e diete By S R aue Srg Aedt Srelh e e daun S SR i o SRR A SESE NS S AP 4

PRIMITIVES / CALL

- 3.9.5 CALL
- The CALL Primitive triggers execution of the called Process.

- A CALL has one of three options (1) WAIT, (2) NOWAIT and (3) BLOCK. If a

Process is called with the option WAIT, the calling Process will suspend
- execution until the called Process is campleted. 1If a Process is called >
3 with the NOWAIT option, both called and calling Processes will execute
simultaneously and will have mo further communication. If a Process is
called with the BLOCK option, the two Processes will execute in parallel
until a WAIT Primitive is reached in the execution of the calling Process.
When the WAIT Primitive is reached, the calling Process suspends execution
until the called Process(es) complete(s). The principal purpose of the
BLOCK option is to allow the calling of several different Processes, all
of which must be campleted before the calling Process will continue. If
several Processes are called with the BLOCK parameter, the calling Process
will susperd at the WAIT Primitive--whose presence scmewhere below such a
CALL Primitive is obligatory--until all of them have completed execution.

Two of the three kinds of Processes can be triggered via the CALL
Primitive: parameter passing Processes and standard Processes. The
triggering of an Item passing process is discussed in the section
describing the SEMD primitive. In triggering a parameter passing Process
with a CALL Primitive, parameters are given to the called Process and/or
parameters are returned to the calling Process. Parameters can be
numerics, string literals, keywords, or the names of Items, Queuves,
Resources, Processes, Tables, and Actions. Parameter passing Processes
with return parameters can be called only with the WAIT option. Standard
Processes, which neither give nor return information may be called with
any of the three options WAIT, NOWAIT and BLOCK.

] The CALL also requires that a priority be established for the called
- Process. Priority is inverse, priority 1 preempts priority 2. This
N priority may be used by the called Process when campeting with other

5 Processes for available Resources (through the ALLOC Primitive with
) SPRIORTY, see section 3.9.2).

The form for the CALL Primitive is shown in figure 3-17.

3-30

F_".u-_r‘r E i el g

Figure 3-17. Form for the CALL Primitive

Following is a descripticn of the fields in the CALL form:

CALLED-PROCESS NAME: The Process to be triggered.

WAIT/NOWAIT/BLOCK: Explained above.

PRIORITY: The priority associated with the triggered
Process (discussed above).

GIVEN: Up to six parameters whose values are to be
communicated to the called Process. Left blank
if called Process is a standard Process.

RETURN: Up to six parameters whose values are to be
returned to the calling Process. Left blank if
called Process is a standard Process.

COMMENT: Any user comment

PRIMITIVES / COMPARE

3.9.6 COMPARE

The COMPARE Primitive is used to model decisions based on user-controlled
variables or the values of system keywords and attributes. The COMPARE
performs the following operation:

IF P IS TRUE, THEN GO TO A

where:

"A" is an ENTRY label (defined by an ENTRY primitive) which is branched to
if P is true.

"P" is a predicate which can be TRUE or FALSE. It consists of a phrase:
X1 OP X2

X1,X2 can be:
(1) signed, single precision, real or intsger numbers

{2) global Variables or Constants
(3) local Variables
(4) Resources with either NWAITQ, MBUSYQ, NINACTQ or NIDLEQ
attributes (which cannot be modified by the user) (see section
3.12)
{5) SCLOCK (see section 3.16)
(6) a value specified by an Item name and attribute
{7) a value specified by a Resource name and attribute
(8) a value specified by a Process name and attribute
(9) an Item name
(10} a Resource name
(11) a Process name
(12) a Queue name
(13) a Table name

(14) an Action name

(15) SNODE (see section 3.16)

(16) SNXTNODE (see section 3.16)

LS el "B Al Mt S an Bl -8 ol 4

vvv-w*—1

RSPt A oS ol b gt ek b it i it /il S e Il 2 |

(17) SLINK .see section 3.16)
(18) S3TASK ’see section 3.16)
(19) SCNCLCE /see section 3.16)

-~

(20) an alicha literal (first charscrter is 37 (see secrtion 2..5)

(21) a Cueue with 2ither NQUEUE or TQUEUE as an attribute :wnich
cannot be modified by the user) (see section 3,12)

"OP" is one of the following operators:

EQ

equal to,

ME -~ not =squal *o,

GE

greater than or equal to,

GT

greater than,

LE ~ less than or equal to,

LT -~ less than.
Operation - "X1" is compared to "X2" using real, single precision
arithmetic. If the comparison results in the same relation as "OP", then
"P" is set TRUE and a branch is made to label "A"; otherwise, no branch is
made (the next Process Primitive is executed).

The form for the COMPARE Primitive is snown in figur= 3-18.

TITIMETISN TTE TWRRC

Figure 3-18, Form for the COMPARE Primitive

The parameters of the form are filled in as indicated above.

3-33

L T T A S R SR BT LTl S LTt P . e et e D
T e e L N e e T e e T e T e et e T e e e e e e

- PN N I A N oS o i i S it D SR R L R T T - . PR T B R T Py AP
e R VL e L T, LV LR SR . S S o A R R A S T A S T L O L AL T A A WY

S DR A
LN

e e b e

PRIMITIVES / CREATE

3.9.7 CREATE

The CREATE Primitive is used to create Items (note the SEND Primitive can
also create Items as part of its function). The initial attribute values
{defined when the Item is declared) are assigned upon creation. Each Item
created is attached to the Process. Two Items of the same name cannot
exist in a Process at the same time. Item definitions are specified in
the DUI. The form for the CREATE Primitive is shown in figure 3-19.

Figure 3-19. Form for the CREATE Primitive

Following is a description of the fields in the CREATE fomrm:

ITEMS: references to distinct Item types, instances of which are
to be created.

COMMENT: Any user comment.

WY

| SRt O A S TR IR A Dol e A A Il St e et e o o v
- - e D A e P % AR A A iR I Bk Bt b A s e e e e e svea o

PRIMITIVES © DEALLOC

3.9.8 DEALLOC

The DEALLCC Primitive indicates the release of previously allocated
Resources. I+ is used o represent’ the ralease of a Pesourcz (making it

available to another request) upon completion cf a job. The form for the
DEALLCC Primitive is shown in figure 3-20.

SEA__I0ATT FEITUEIT NGME: _
NUMRER TF TS DEAL-JC#’?‘:-
e

Figure 3-20. Form for the DEALLOC Primitive

Following is a description of the fields in the DEALLOC form:
RESOURCE NAME: A reference to the Resource to bhe released.

NUMBER OF UNITS: A reference to the.integer number of Resource units
to be returned to the idle state.

COMMENT: Any user comment,
3-35
PELEPCIRTE S T S PR e . .
AT SOy -..*-»' BT T e S e KRR Y e e e e e e e e e "
P I T Sl B SN U T N i AP e AL e . a e e . .

PRIMITIVES , DESTROY
3.3.9 DESTROY
The DJESTRCY Primitive is used to eliminate Items from the system, marking

the end of the time in system. When an Item is destroyed, statistics on
i7s zime in the systam ars =abuiatved for rthe simulation's Irem report.

The form for the DESTRCY Primitive 1s shown in figure 3-21.

Figure 2-21. Form for the DESTROY Primitive

Following is a description of the fields in the DESTROY form:

[TEMS: References to Adistinct Item types, instances of which are
to be destroved.

CMMENT: Any user comment.

v

~ Ot L e e f i e i -4 - b el ~ R A O

PRIMITIVES / ENTRY

3.9.10 ENTRY

The ENTRY Primitive is used to define entry points from the branching
Primitives, BRANCH, PRCB, COMPARE, TEST and LOCP. The form for the ENTRY
Primitive is shcwn in figure 2-2Z.

Figure 3-22. Form for the ENTRY Primitive

Following is a description of the fields in the ENTRY Primitive:

ENTRY LABEL: The 1-8 character name of the entry point used by the
branching Primitive(s) which transfer control to it.

COMMENT: Any user comment.

?’v'. LR T g A A e S Pl M Sl e

PRIMITIVES / EVAL
3.9.11 EVAL

The EVAL Primitive is used to perform simple arittmetic functions within a
Process so that model ‘ogic and riming can de 2 Zunction of variables
rather than a constant. EVAL cperates in the following manner:

X = f(a,D)

where:
X is any variable that is changed to the value f(a,b)
"a" and "b" are arguments that can be -
l. signed, single precision, real, or integer number, or
2. neued Variable or Constant, or
3. named local variable, or
4. SCLOCK (simulation clock value)

where f is one of 27 functions helow. 2ll calculations are carried out in
a single precision, real arithmetic.

FUNCTION MNAME RESULT

1. ADD a+b

2. SUBTRACT a-b

3. MULTIPLY a*b

4. DIVIDE a/b

5. ABSOLUTE B

6. INTEGER returns the integer part of a number

7. POWER a**p

8. COSINE cos(a) (for a in radians)

9. SINE sin(a) (for a in radians)

10. TANGENT sin(a) /cos(a)

11. SOQRT sgrt a .
12. RANDCM randam fraction {(randam number between 0 and

1.0)

13. ARCOSINE arcosine(a) (in radians)
14. ARCSINE arcsine(a) (in radians)

15. ARCTAN arctangent(a/b) (in radians) -
16. BETA random sample of the beta function with

a = power of x; a>0
b = power of l-x; b>0
17. BINOMIAL randan sample of the binomial function with
a = number of trials
b = probability of success
18. ERLANG randam sample of Erlang function with
a = mean
b = k (integer order of function)

3-38

''''''''''''''''

e "

AN AR S A S AT S el i A s B 4 |

19. EXPOUENT randam sample 2f expeonential function with
a = mean

20. GaMMA randam sample of gamma function with
3 = mean

) b =X
' 21, LOGE natural logarithm of a; a>0

22. LOGNORML -andam sample of log normal function with
3 = nean
b = standard deviation

23. LOGlO0 common logarithm of a; a>

24. NORMAL random sample of normal function with
a = mean
b = standard deviation

25. POISSON random sample of Poisson function with
a = mean

26. UNIFORM random sample of a uniform function with
a = mean
b = delta (i.e., the difference between the
largest possible value and the mean value)

27. WEIBULL randam sample of the Weibull function with

a
b

scale parameter

shape parameter

In addition to these functions the user may define his own functions
through the Table entity (see the section on Tables). The form for the

EVAL Primitive

Following is a
VARIABLE:

FUNCTION:

! OPERAND1:

OPERAND2:

COMMENT:

is shown in figure 3-23.

TiIiMETIog TUR oo

ol T S
e

Figure 3-22. Form for the EVAL Primitive

description of the fields in the EVAL form:
The local variable whose value is to be set.
The operation used to calculate the value of the variable.
The first operand in the calculation of the new variable
("a" parameter). This may be blank, depending on the
function.
The second operand in the calculation of the new variable
("b" parameter). This may be blank, depending on the

function.

Any user comment,

Ay ~

PRIMITIVES / FILE
3.9.12 FILE
The FILE Primitive is used to place an Item on a user-defined Queue.
The effect of filing an Itam on a user-defined Queue is to keep it in

storage after the Process from which it is filed has ceased execution.
The form for the FILE Primitive is shown in figure 3-24,.

TARLMETIC TIE T

SILDOITIM ONAME: — PR - N SELE - 7
e

Figure 3-24, Fomm for the FILE Primitive

Following is a description of the fields in the FILE form:
FILE ITEM NAME: A reference to the Item to be filed.
OPTION: The location in the Queue at which the entity is to be
filed relative to the Queue pointer. The following can be
used:

FIRST ~ The entity is placed first and the Queue pointer
is set to it.

LAST - The entity is placed last and the Queue pointer is
set to it.

NEXT - The entity is placed after the current Queue
pointer position in the Queue and the Queue pointer is
reset to it,
BEFORE - The entity is placed before the current Queue
pointer position in the Queue and the Queue pointer is
reset to it.

QUEUE: The Queue on which the Item is to be filed.

COMMENT: Any user comment.

R et A a4

LA S A o 4 S R Ses 2 0 U gn Siae 0 a0 pan g

PRIMITIVES / FIND
3.9.12 FIND

The FIND Primitive is used %0 razset the Queue mointer on a user-defined
Queue (section 3.4) or a cross-raference set (section 3.5.2), armd ‘o
assign to a local wvariable 2 "lccator" pointer to a current positicn in
the Queue. The rules governing Queue pointers are covered above in the
section on user-defined Queues. The form for the FIND Primitive is shown
in figure 3-25,

e T N e

Figure 3-25. Form for the FIND Primitive

Following is a description of the fields in the FIND form:

FIND OPTION: The location (FIRST, LAST, NEXT, or BEFORE) of the
Item or member of the cross-reference set to be

assigned to the variable relative to the present Queue
pointer.

ITEM NAME: The local variable which will refer to the Item or
member of a cross-reference set.

ON QUEUE: The name of the Queue or cross-reference set that is
to be traversed. If the cross-reference set is
intended, the entity type whose cross-reference set is
to be traversed is entered.

COMMENT : Any user comment.

The effect of locating an elament with the FIND Primitive is (1) to set
the Queue pointer to the beginning or end of the ordered holding area
(i.e., FIRST or LAST) or relative to the previous location of the Queue
pointer (i.e., MEXT or BEFORE), and (2) to assign the eleament in the
position then indicated to the local variable.

3-41
/!

. e T e
. A TN R e
P R D A SIOE A RN AL AL T A P

- T TRV ey ey IS i Sl o e B
PRI LT R Rt . e

Eaan oAl 4

v

TR TN R ——y

e N m‘ . wwa .

N W W vy

PRIMITIVES / LOCK

3.9.14 LCCK

The LOCK Primitive prevents 2 Process from being suspended by losing
Resources to a "higher" pricr:fi Process (priority is inverse, priority 1
preempts priority 2). LOCK is used %o represent uninterruptable work. If
LOCK is not used, Process execution can be suspended by a nhigher oriority
Process. When a Process loses any one of the Resources it has aliocated
it stops execution and is placad on a system-defined queue (the wait
queue) until the Resource is again available. The LOCK Primitive
overrides this suspension. The form for the LOCK Primitive is shown in
figure 3-26.

TiIamCTIIIOTRD g

'“‘M{\". —

Figure 3-26. Form for the LOCK Primitive

Following is a description of the field in the LOCK form:

COMMENT : Any user comment.

PRIMITIVES / LOOP

3.9.15 LooP

The LOOP Primitive causes a branch to a named entry point a specified
number of times. The form for the LOOP Primitive is shown in figure 3-27,

L] o itat o) ~Am
iFieeTI: Top £,

Figure 3-27. Form for the LOOP Primitive

Following is a description of the fields in the LOOP form:

LABEL: The name of the ENTRY label (defined by an ENTRY Primitive)
to which execution is to branch.

LOOP: Indicates the number of times Primitives between the ENTRY
label and the LOOP Primitive will be executed. This
includes the initial pass. For example, if 10 was used,
then for each execution of the Process, the Primitives
between the Entry label and the LOOP Primitive would be
executed 10 times. Execution control would branch back to
the EMTRY label 9 times.

COMMENT: Any user comment.

3~43

O T R SR VUL L SR R
R R S S

..
- ", LA N P . u
A A e A A

e R L N W S N R T o e T W V¥ W Y= w——rv,

PRIMITIVES / PROB
3.9.16 PROB

The PROB Primitive is used to model stochastic decision making. It
indicates a probabilistic branch “o 2 named entry point. Random number
selection for the probabilistic branch can be controlled by the use of the
EDIT STREAM command in the AUI. The form for the PROB Primitive is shown
in figure 3-28.

DiMpeToe ren ormmans caen .
JIMETIIT TTponiinpe S

Figure 3-28. Form for the PRCB Primitive

Following is a description of the fields in the PROB fomm:

LABFEL: The ENTRY label (defined by an ENTRY Primitive) to
which the branching is to take place.

PROBABILITY: The probability with which the branching is to take
place, expressed in (integer) percent.

COMMENT: Any user camment.

PRIMITIVES ,/ REMOVE
3.9.17 REMOVE

The REMOVE Primitive is used to ramove an Item from a user-defined Queue.

The effect of ramoving an [tam is -0 make it .naccessible to other
Processes until it has 2een placed on another Queue (through the FILE
Primitive) or delivered to another Process through the SEND Primitive.
The form for the REMOVE Primitive is shown in figure 3-29.

SAZIMOTTIC ITT ITwe o

Figure 3-29. Fomm for the REMOVE Primitive

Following is a description of the fields in the REMOVE form:

REMOVE OPTION: The location in the Queue of the Item to be removed.
The option can be one of the following:

FIRST - The first entity is reamoved and the Queue
pointer is reset to the new first element.

LAST - The last entity is removed and the Queue
pointer is reset to the new last element.

NEXT - The entity associated with the current
Queue pointer location is removed and the
Queuve pointer is reset to the succeeding
elament to it in the Queue.

ITEM NAME: The local variable that will contain the Item which
is removed from the Queue. If there is no Item to be
removed, this local variable is set to zero.

FROM QUEUE: The Queue from which the Item is to be ramoved.
COMMENT: Any user comment,
3-45

T R O L P L L . BRI I L P AT . . - B .
. ,~‘_--.~..-'_u-.\‘_--_-.,~_-.-,._-,-.—,~.~‘."~.‘,_‘~ I T T T e e R A L R) .~..~._-"~..¢ .
VLI, . S S A A A N A e T T T T e T S e s e N YN .

. . - " - - " e . . . - - - - . et - .
A SRRV SRS G IRy S Tt ML VU VEFR AR VYR VE VP WL v P W i ol

By e et et et STl AR Atk S b At JL i Bt e Rt s e A e Ry e R T I Y NP T V.Y v _ w = v w_ w

PRIMITIVES / RESET
3.9.18 RESET

The RESET Primitive redefines the number of available units of a named
Resource to plus or minus the indicated wvalue. It is used to represent
the increase or decrease of *he available number of Resource units. The
form for the RESET Primitive is shown in figure 3-30.

:';:NE'::S fj; s Il

BDIDUEE N

T .
e

Figure 3-30. Form for the RESET Primitive

Following is a description of the fields in the RESET fomm:

RESOURCE: A reference to a Resource whose available units are
increasing or decreasing.

RESET BY (+/-): The number of units to be added to or subtracted
from those presently available. If more units are
to be made available, this value is positive. If
units are to be made unavailable, this value is
negative.

COMMENT: Any user comment,

R N L A P L
e -

- . - »" ...‘ "'-.' > " -
S e RN e o BN A
ORI A Y, .r‘:.".' o L e I R AP

i

e, e
ca e e, .'_“._ CRA A ,‘kr_‘v__v‘_-yv‘—v‘_v‘“’(‘“r'., e v:;_-_,,,“‘v—._ e T T W

PRIMITIVES / RESUME
3.9.19 RESUME

The RESUME Primitive is used to control explicitly the resumption of a
Process which 1as been susmended through the SUSPZND Primitive.

Resources deallocatad =zt “he “ime of suspensinn must de cbtained again
before Process execution progresses. The requests for these Resources is
automatically handled by the RESUME Primitive. There is no preferential
treatment given to these requests. They are treated in the same manner as

an ALLOC Primitive. T™e form for the RESUME Primitive is shown in figure
2-31.

- fAmi i, e aem
Mo IQ0TCTT JUITOONSNT ‘

Figure 3-31. Form for the RESUME Primitive

The fields V1 and Ql constitute a reference to task that is being resumed
(see SUSPEND) and the COMMENT field is any user comment.

3-47

TN T

T N o T T A e T e ——y ~ o =

PRIMITIVE / SEND
2.9.20 SEMD

The SEMD Primitive is used to send up to six Items to an Item passing

Process. If an I%em to be sent is not currently attached to the sending

Process, it is automatically creatad. When the Ttems are sent, the

receiving Process determines whether all the Items required by its

definition have been received. If they have, the Process then initiates; -
if not, it will wait until all of the necessary Items have been received

before executing. The form for the SEND Primitive is shown in figure

3-32.

Figure 3-32. Form for the SEND Primitive

Following is a description of the fields in the SEND form.

SEND: A reference to the Process to which Items are to be sent.
ITEMS: References to up to six Item types, instances of which are
to be sent. -

COMMENT: Any user comment.

..

- . . . - . - - . . . - . - - . -

PR . - 'y - . - N . . . - « . ~ . . - - - i - -~ - - - -

PRI A T AP SIS IUAPRLIT Yhat ToiP Wil TSP AP TP VAT Sl WY aer W FRCIREIASIPW OIS, RN VRN
RO -~ PRI

e
B

PRIMITIVES / SUSPEND

3.9.21 SUSPEND

The SUSPEND Primitive is used to suspend the Process in which it appears.
A Process that susoends itself with this Primitive may only be resumed by
another Process which uses the RESUME Primitive. Since the RESUME
Primitive must be able to refer to the task instant to be resumed, the
suspending Process instance must save a reference to itself (i.e., assign
the value of the keyword S$TASK to 2 global Variable or send it as an
attribute of an Item) for later access by a RESUME Primitive. See section
2,16 for a description of S$TASK. The SUSPEND Primitive causes the
deallocation of the Resources allocated to the Process. The form for the
SUSPEND Primitive is shown in figure 3-33.

TiIiMETTII TTF Do SnrND.

Figure 3-33. Fomm for the SUSPEND Primitive

Following is a description of the field in the SUSPEND form:

COMMENT : Any user camment.

3-49

- Ad Ad w i d . Zaafn had T L . A
" - BEERSRENNE KR S S N A Sat R e I taeataUL IV A A v - ———

R TS U S TR . DT
Tt T et e e e, P PR SR B P R
AN K . C e e e .

....... - a

- . I\.'. «
b i WL L, W, Y

A%

o'

RN

PRIMITIVES / TEST

3.9.22 TEST

The TEST Primitive indicates a branch to a named ENTRY Primitive if a
Resource or Queue is no* availaple. It is used to model decision making
based on the availability of needed Resources or Queues. The form for the
TEST Primitive is shown in figure 3-34.

LedMUTIRT ITR TIIT.

Figure 3-34, Form for the TEST Primitive

Following is a description of the fields in the TEST form:

RESOURCE NAME: A reference to the Resource or Queue being tested
for availability.

BRANCH TO LABEL: The name of the ENTRY label (defined by an ENTRY
Primitive) to which execution is to branch if the
Queue or Resource is not available.

COMMENT: Any user comment.

3-50

A ..'-".. EASEN e . e, .’- o, , ..c .. .t

.
APPSR SV s ".-_._--4'. g.' e A

Aadia B Bde a4

P PR 3

hcadh,

Eaadt Ak Al At Aad Ak e ted el el Sed A Sag d Ml e e S ae

PRIMITIVES / TRACE

3.9.23 TRACE

The TRACE Primitive starts a debugging mechanism that is useful for
analyzing the dynamics of an AISIM model. The 2ffect of the TRACE
Primitive is to create a file that records every execution of a3 Process
ard of the following Primitives within the Process.

START

CALL

ALLCC

DEALLOC

END

RESUME

RESET

SUSPEND

TRACE (on or off)

These Primitives are traced because they introduce major changes in the
state of the system into a simulation run,

When the TRACE Primitive is operating, every instance of these Primitives
in every Process is recorded either for the ramainder of the simulation or
until TRACE is turned off. The trace line writes out the simulation clock
time, the node in which the Primitive is executed, and the Process
executing the Primitive. The format for a trace line is the following:

T = clock time N = node name P = Process name Primitive parameter

The form for the TRACE Primitive is shown in figure 3-35.

T3AMETIIT TR AL

Figure 3-35, Form for the TRACE Primitive

3-51

Following is a description of the fields on the TRACE form:

ON/OFF:

COMMENT

"OM" to enable the TRACE.
"OFF" to disable trne TRACE.

Any user camment.

Sl

R B

. L4
o W,

e e e e AT e e T e S T L S e
PINEANIENENICI BN . . .

PRIMITIVES / UMLOCK

3.9.24 UNLOCK

The UNLOCK Primitive cancels the effect of a previously executed LOCK
Primitive, It is used -0 represent the conclusion of the uninterruptable
phase of a Process. The form for the UNLOCK Primitive is shown in figure

3-36.

SREINETIE IS MUK
e
Figure 3-36. Form for the UNLOCK Primitive

Following is a description of the field in the UNLOCK Primitive:

COMMENT: Any user comment.

-
L3P B]

PRIMITIVES / WAIT

3.9.25 WAIT

The WAIT Primitive is used in conjunction with the CALL Primitive when the
BLOCK option is used. The WAIT Primitive indicates that the calling
Process is to be suspended until all Processes it triggered by a CALL with
the BLOCK option have completed and returned control to the calling
Process. It is generally used to model phenomena such as assembly points,
executive schedulers, and other events in which progress cannot continue
until several parallel activities are completed. Resources currently in
possession of the calling Process are not deallocated. The form for the
WAIT Primitive is shown in figure 3-27,

TIPAMETIRE TR WA
oty
Figure 3-37. Form for the WAIT Primitive

Following is a description of the field in the WAIT Primitive:

COMMENT: Any user coment.

S
»

PR |

L o

e

~ -t "

LEGAL PATH TABLE
3.10 LEGAL PATH TABLE -~ NODE - LINK

The Legal Path Table (LPT) entity Is the means by wnich the user can model
rhysical communication paths between Resources. Tvpically, this is
referred to as inter-node communication. wWhen the LPT is not used, the
communication mechaniams are impl:i:cit in tne Process logic and do not
usually have explicit Resources cthat cause cammunication queueing and
transfer delays.

Two other model elements need to be discussed as part of the LPT entity;
these are nodes ard links. Nodes represent the points in an architecture
where processing occurs. Links are the communication paths between nodes.
Each node and link is actually a model Resource -— the name of the
Resource being the name of the node or link. Full Juplex links (denoted
by ".F" after the link name) are two Resources. One will be named the
name of the link with ".A" appended to it and the other with ".B",

The LPT consists of 2 four part list that specifies the FROM node, a TO
node, a MEXT node, and a LINK. 3An sxampls of Legal Path Table entries is
given in figure 3-38.

FROM . T0 NEXT VIA
NODE NODE NODE LINK
A c d €1
8 C c2
C A A C1
'd -] B8 C2
c 0 D C3
) C C C4
D E 3 cs
[») F F cs
E D) cs
E ¢ G cs
F D D cs
F G G C7
G £ € (o]
G F F c7
[+] L]] co
¢ 1 I Ci8
H G G Co
I G G Cio

Figure 3-38. Sample Legal Path Table Entries

The headings indicate that to move from the FROM node to the TO node one
must first go to the NEXT node via the LINK,

The LPT is a passive entity in that it does not contribute directly to the
simulation statistics but, instead, is simply a table of values used by a
model to effect data flow through a system. It is only changed through
the Architecture Design Editor and therefore remains crnstant for any
specific simulation run. Processes reference the LPT through the ASSIGN
or COMPARE Primitives using SCNODE (current node), SNXTNODE (next node as

3-55

B
T AN Ve Ne v
LR I

. - - oAt o™
LS R

AaCOACI RNL A A RN RV e Sl gl gkl ge L pan il bl el e

NI ans Sa bl sow- uha

S ARCRACIAA N T Rek JRA A e Sk Bed Al 't

specified in LPT), and SLINK (the Link for the transfer) keywords (see
section 3.16).

9 Operation - Every Process in AISIM can be set to execute in a specific

- node. Using the LPT through the keywords and tue ASSIGN Primitive, a
Process can locate itself in the network and reference other nodes. The
referencing is done symbolically so that a Process can do this when
executing. This allows AISIM to model different architectures without

3 changing the model Processes. -
A}
-«
2-56
.. p ‘-’,‘-. .-‘A.A"._"."T ot .'.‘I-'.’ '_.. AP -_.. - R —..'- N -...-__.-’4.-. AR
et T A e S . o

TABLES

3.11 TABLES

Tables are user definable functions with 1 to 15 entries. Each entry
consists of an X-YALUE and a Y-VALUE. The following may de used for these
parameter values: (1} both numeric, (2) one numeric and the other
alphanumeric or (3) both alphanumeric.

Tables are accessed by using the EVAL Primitive. The EVAL FUNCTION
parameter is the name of the desired Table. Operand 1 is the X-VALUE.
Operand 2 ‘s not used. The SET VARIABRLE will be set to the Y-VALUE which
maps fram the X-VALUE.

3.11.1 Discrete Tables

If the Table accessed is discrete (TYPE is D), the Table entry's X-VALUE
must be numeric, and the X-VALUE entries must be in increasing order. The
Y-VALUE extracted from the Table is that value associated with the X-VALUE
that is equal to or less than the X-VALUE given in OPERAND 1. For
example, if an X-VALUE of 3.5 is given in OPERAND 1 and the nearest
X-VALUES in the Table are 3 and 4, the Y-VALUE associated with the X-VALUE
of 3 will be extracted and placed in the given SET VARIABLE name. If
OPERAND 1 is less than the smallest X-VALUE, the value returned is the
Y-VALUE associated with the largest X-VALUE.

3.11.2 Continuous Tables

If the Table accessed is continuous (TYPE is C), all X~-VALUE and Y~VALUE
entries must be numeric. The SET VARIABLE of EVAL is set by the following
rules :

a. the Y-VALUE associated with the X-VALUE that equals OPERAND 1, or
b. the interpolation of the Y-VALUE associated with the X~VALUE
which is less than OPERAND 1 and the X-VALUE greater-than OPERAND
) 1, or
c. the Y-VALUE associated with the largest X-VALUE, if no
interpolation is possible.

3.11.3 Alphanumeric Tables

I1f the Table is defined as alphanumeric (TYPE is A), one or both X-VALUE
and Y-VALUE for each entry must be a name of a model entity. The SET
VARIABLE is set to the Y-VALUE corresponding to the X-VALUE.

1f OPERAND 1 in the EVAL Primitive does not correspord to an X-VALUE in

the Table referenced, an execution error message will be printed in the
analyze report and the value of the SET VARIABLE will remain unchanged.

3-57

NI s T e e T St S S e T T T e e e e e e e e T T s e T RIS
T e e e T et e e e e A AT AT L T e e s R e IR IR I TS S N A R T W Y)
A e e B 2 LRI Vol Rl AR WL % O U ST S Snmutdieiniimtitionteient it et finiinfietefede e VAL RV, R WA W AL S P A T

The form for the Table entity is shown in figure 3-39.

Figure 3-39., Form for the Table Entity

Following is a description of the fields in the Table form:

TABLE: 1l to 8 character name of table

TYPE: C - continuous, D - discrete or A - alphanumeric.

X VALUE: x-axis value

Y VALUE: y-axis value .
COMMENT: any user coment. (0 to 53 characters)

Table entities are entered using the Design User Interface EDIT command
(see section 6.1.4). -

- o - - v - . - - . - - - - <. . - - -~ - . . N tat - . ~ - - . LTI A AT "'-~‘.'i~-.
. . c e - S SN T e T e e et SN et e ORI R
; N .. e A e NN S Ty A

v
4

—y o A% gin SN 0 o o
; AR R

3 NOooew
- -'l'-.- -.‘

ATTRIBUTES

3.12 ATTRIBUTES

Certain AISIM constructs have associated attributes which can take as
values, (1) numerics, (2) alpha literals (3) entity names, or (4
keywords. Some attributes are user defined., Others are dynamic
attributes which are recognized and modified by the AISIM simulator.

The values of attributes may be accessed by a Process with the ASSIGN and

COMPARE Primitives. The forms for both of these Primitives use two fields
to indicate the value accessed. The first field contains the name of the

entity and the second the name of an attribute associated with it.

Three AISIM entities, Processes, Resources and Items, may have attributes
specified by the user. These attributes allow the modeler to define a
unique set of characteristics for certain entities. BAn example is a
channel., Channels have a physical attribute of maximum transfer rate.
This characteristic is assigned to the AISIM Resource by specifying an
attribute of RATE for the channel Resource.

Simulation experience has shown that some logic in a system is dependent
on the system's dynamics. That is, some activity is dependent on gueue
lengths or the number of busy Resources. Since this phenomenon is fairly
camon, AISIM has embedded features to model this., The following
attributes are built into the AISIM simulator for each instance of an
entity. These attributes may be accessed by the COMPARE and ASSIGN

Primitives, but the values for the Resource and Queue attributes may not
be changed by the user.

Entity Attribute Description
Resource NIDLEQ the number of units of the Resource which
are in an idle state
NBUSYQ the number of units of the Resource which
are in a busy state
NINACTQ the number of units of the Resource which
are in an inactive state
NWAITQ the number of Processes executing which are
waiting for a Resource unit to be
deallocated
Item TAIL the sequential creation number of the Item
PRIORITY the priority of the Item
Queue NQUEUE the number in the Queue
TQUEUE the average time entities are in the Queuve
3-59

DA AARCRERAEI A IN A Sl) |

......

CONSTANTS AND VARIABLES

3.13 CONSTANTS AND GLOBAL VARIABLES

Constants and Variables are entities used to define global parameters of a
model, that :s, alues which mav pe accessed by all Processes, There is
an implicit ~aution which must be used when using these entities. Because
AISIM simulates multi-processing, global parameters can be accessed
"concurrently" by more than one Process. Care should be taken when
multiple Processes mcdify the same global Variable.

A Constant is given a numeric value before the start of a simulation. The
value must be numeric and can not be changed by the simulation. A
Variable may be set to (1) an alpha literal, (2) the value of a keyword,
or (3) to any other AISIM entity tnat may be accessed by the EVAL and
ASSIGN Primitives. A Variable's value may vary throughout the simulation.

The initial values of both Constants and Variables are set in the Design
portion of AISIM. The value of both entities may be reset, before the
simulation is started, in the Analysis function.

While the wvalue of a Constant may not pe changed during the simulation,
the initial value of a Variable may be changed by the user (between
periods or at break points) or by the model itself (by use of the ASSIGN
and EVAL Primitives).

Corstants and Variables may be used in place of a numeric value anywhere a
numeric value is required with the following exceptions:

1. The number of units of a Resource may only be a Constant or a
numer ic value.

2. The initial value of a Constant must be a numeric value.

The forms for Constants and Variables are shown in figure 3-40,

Figure 3-40. Fomms for Constant and Variable Entities

e W gy T R R M O e g e N g e~ Uand
AN A IR AN nCue i e St) e e, i il aai St et St T i e i i i s e e o o N X e w .

Following is a description of the fields in the Constant and Variable
forms:

VARIABLE/CONSTANT: 1 to 8 character name of Variable or
Constant.

VALUE: 3 digit floating point or any AISIM variable
reference to a numberic value.

DESCRIPTION: Any user comment., (0 to 53 characters)

Constant and Variable entities are defined using the Design User Interface
EDIT command (see section 6.1.4).

Wt T AT e T e R U & e R NI

R O, . T L LT J S PSP R
e e e T e e e S e T e T e e e e T T e T T ConTe S L N T

e e e e e e e e e LT e AT L e T e L L B e IR S O Y VL Te e . RO
a PRI SR RPN IR P RS IO N T P R R RO S A, S o A T A T e e S e

B R R S R o RO At I I A I A A

(S MRS S MR A

LOCAL VARIABLES
3.14 LOCAL VARIABLES
AISIM has two kinds of variables: local and global. Global Variables are
those explicitly defined for the model and given initial values, Local
variables are ones that appear in Process Primitives but are not otherwise
defined. Local variables enable Processes to execute .n parallel without
interfering with each other because each Process has an independent set.
At the beginning of the execution of a Process all'local variables are
initialized to zero, They will remain so unless other values are
explicitly assigned to them. Local variables may be assigned values with
the ASSIGN and EVAL Primitives or through parameter passing. Local
variables may be assigned the following values:
Numeric ~ a floating point or integer number
Global Constant or Global Variable value
Another local variable
A Resource name
A Process name
An Item name
A Queue name
An alpha literal (first character $)
The value of a keyword evaluation
Although "local," the values of such variables can be cownunicated from
one Process to another through parameter passing (i.e., through the CALL
Primitive). Local variables can be used to fill in any parameter slot in
any Primitive that is not an option, a label, a distribution or function,
and including:
Item attribute
Resource attribute
Process attribute
CALL given parameter
CALL return parameter

Process given parameter

Process return parameter

3-62

A '.*‘.«“ o ARl Rl S '_,

Nl Ml JAss sel Sl el el A h Wl B ek e e & e) - -

ALLOC Resource name

DEALLOC Resource name
CALL Process name
CALL Priority name

ASSIGN set variable (variable 2)

COMPARE variable
FILE Queue name
FILE Item name
FIND Queue name
FIND Item name
REMOVE Queue name
REMOVE Item name

RESUME task reference

3-63

. ',"".'.:;, AR i e e it i AR Al Ve b A jesd e

ALPHA LITERALS
3.15 ALPHA LITERALS

An alpha literal is a character string. It consists of a $ followed by up
to seven other characters, as in

SWAIT
and

SJOMES

that do not make up the name of a keyword (see next section). Alpha
literals can be used to campare strings for identity or nonidentity with
the COMPARE Primitive. They can be used as attributes. This is useful
for making AISIM models more readable.

DA AR Sl N i ol i A B At B ath a2t oAl o oy

KEYWORDS

3.16 KEYWORDS

The following keywords are defined in the AISIM simulator and may be used
in Process logic in any Primitive in which the evaluation of the kevword
results in a value which is correct in context.

Like alpha literals, these terms begin with the character "S"., However,
keywords function differently from alvha literals. Keywords evaluate to a
value. In that sense they can be considered intrinsic functions.

SCLOCK - The value of the current simulation clock during the execution of
a simulation run. This keyword may be placed in any field of a Process
Primitive which may contain a numerical value.

SCNODE -~ The reference to the current node in which a Process is
executing. All Processes can be set to execute in a node in the
architecture. The node correspords to a Resource. This keyword evaluates
to the Resource. This keyword allows a3 modeler to control allocation and
deallocation of a node from within the =xecution of 3 Process. This
keyword can be assigned a value. This, in effect, changes the node in
which a Process is logically executing. This is the only keyword that may
be assigned a value in the Process logic.

STASK - The current instance of the Process in which this keyword appears.
A Process executing in a simulation can assign the value of the STASK
keyword to a global Variable. This allows one Process to susperd itself
and another Process to resume it by referencing the Process to be resumed
with the stored value of STASK.

SPRIORTY - The priority of the currently executing Process. This keyword
is generally used in an ALLOC Primitive to resolve Resource contention
issues.

SNODE - SNODE takes one argument, a reference to a Process. Given a
Process, SNODE evaluates to the name of the node in which the Process has
been defined to execute. This is the name of a Resource. This keyword
allows a Process in AISIM to determine a destination for messages which
request a specific Process to be executed. The node specification for a
Process is defined by a user and is associated with the START symbol for
the Process.

The following keywords directly access the legal path table and
architecture structure. Each keyword evaluates to the name of a node or
link Resource.

SNXTNODE - SNXTNODE takes one argument, a reference to a destination node.
Given a destination node, SNXTNODE assumes the current node (SCNODE) of
the executing Process is the source (FROM) node. Accessing the legal path
table, SNXTNODE returns the name of the next node along the path to the
destination node. This is the name of a Resource. This keyword allows
the AISIM modeler to write Processes that perform message forwarding
through a network.

.‘-". '.. .n -
\

BASAS
DT L I I P e PR -
St o h o gae al gt o gt gt gt ut o e

-

Pt

S i ok

et S e B e M e S S S i St e S b N B ey

SLINK - SLINK takes one argument, a reference to a destination node.
Given a destination node, SLINK assumes the current node (SCNODE) of the
Process is the source (FROM) node. Accessing the legal path table, SLINK
evaluates to the name of the link to the next node along the path to the
destination node. This is the name of a Resource.

A At it et el i ul S

MESSAGE ROUTING SUBMODEL

3.17 MESSAGE ROUTING SUBMCDEL

When one Process triggers another through a CALL Primitive, the called
Process is initiated in the same node as the calling Process. This is
implicit in the AISIM simulator and is true even if the called Process is
associated with a different node.

In order to model the functional distribution of Processes throughout a
network, a logical Process communication feature had to be incorporated
into AISIM. One requirament for this feature is that the delays inherent
in the network communications be accurately represented in the model so
that if a Process resident in one node initiates a Process resident in
another node, the delays amd queueing effecting this communication are
taken into account. Also, AISIM is required to enable the analysis of
different architectures performing the same functions with a minimum of
change to the model.

To satisfy these requirements a special submodel has been devised to
represent the routing of messages through an AISIM architecture and to
initiate remote Process triggering. Since different protocols for network
comunication are conceivable, the AISIM message routing function has been
implemented as an AISIM model and included in the AISIM system library
under the name COMMUN-B. This enables an AISIM user to select and merge
this model into his own. The advantage of this approach is that the user
can review the logic in this submodel, determine its appropriateness to
his problem and modify the message routing submodel if necessary. This
will not often be the case because the message routing sulbmodel applies to
many cammunications networks.

The message routing submodel uses the architecture and Legal Path Table of
a model through the use of the system-defined keywords and the Process
Primitives.

The message routing submodel consists of one Item representing the message
dispatched through the system architecture, four Processes representing
the activities required for the inter-node communication and other
supporting entities. Everything required for this model is included in
the AISIM system library and can be merged into a user's model in a simple
operat fon., (See section 10.2 of the Library User Interface.)

Additional details on the message routing submodel are provided in
apperdix D.

.67

OO P .
L PSR A

. - . N »' -. - . P Y
- N O A e T AR Y I e L R S T P PR I SRS DRI A AT LTI T .- wtl e et o . fmt e st
L PP P A A T A A P A AR TR I AT e e v T TN N T et e AN A e .

T, -
- e e BT T e

A W Ty W v v oy

SECTION 4

AISIM SYSTEM OVERVIPW AND SYSTEM INITIALIZATION

YT

The AISIM user interface consists of the following levels of operation:

) Level 1 - Not connected level
{ Level 2 -~ VAX/VMS Ready level
Level 3 -~ AISIM READY level
Level 4 - Level 4A -~ Design User Interface (DUI) Sublevel
Level 4B - Analysis User Interface (AUI) Sublevel
Level 4C -~ Replot User Interface (RUI) Sublevel
Level 4D - Hardcopy User Interface (HUI) Sublevel
Level 4E -~ Library User Interface (LUI) Sublevel
Level S - Level SAl ~ Process Editor Interface (PEI) Sublevel

Level S5A2 - Architecture Design Editor (ADE) Sublevel
Level SEl1 - Mergein (MI)

Level SE2 - Mergeout (MO)

Level 5E3 - Checkin (CI)

Level SE4 - Checkout (CO)

Level SE5 - Convert (CONV)

The relationship of these different levels is shown in figure 4-1., The
current level of operation determines the system's response to a given
command. For example, the command EDIT LOAD is valid only in the DUI
level. Each level prompts the user for input with a specific symbol or
phrase. For example, the AISIM READY level prompts with the phrase "AISIM
READY" on the screen when it expects a cammand to be entered fram the
keyboard. The DUI level, on the other hand, prompts with an "*". The
prampt for each level is shown in the figure in its box. The commands
used to go from one level to another are shown next to the arrows
indicating the direction of transfer.

M~ A tae Nt Sun it . st Sed Nah et S 4

ANGO
AQY AL]
sTapow 30 S$IeYIMoT S
sa1dod 8101s Tepow WwTId
Im I

| 0OVRGINI 33 A0 = I
VRGN WOLIA3 SS00D = 13d
NOFRB = O

NIIRB4 = W
TVREINT 23S0 AELT = I
IV RAINT 43S AJOOGRMH = IMH
IWAAUNL ¥3SN NOISA = InD

LBANDO = ANDO
o330 =
NDO3O = 1D

IVSTUNT ¥3SN SISATWNY = INY
401103 NOISI0 WUJUTHRNY = 3V

#
u L v L 13d
v ﬂa 3
$..WI.—) »
syo1d 18pow abueyo
paaes meipal 19pow 3STOIXKD pue 218310
I I Ing

Figure 4-1. AISIM Levels of Operation

4-2

e

4,1 REACHING THE AISIM READY LEVEL

The procedure for logging on is specific to a given computer system and
the user is referred to local references for gaining access to the top
level of the system on which AISIM is hosted. (This section assumes a VAX
compatible host. For other installations please refer to installation
specific instructions.) When prompted with:

$

the user has reached Level 2 of AISIM operation. To reach Level 3, the
user enters the cammand:

AISIM

When execution of this cammand completes, an audible 'beep' will be heard
at the teminal and the AISIM READY prompt will appear on the temminal.

SECTION 5

AISIM READY LEVEL

At the AISIM READY level of operation a number of commands are available
to the user for directing the course of the session (ANALYZE, CHANGE,
DESIGN, END), for manipulating the database (BACKUP, EDIT, RESTORE,
CONVERT), for requesting information about AISIM operation (HELP), for
requesting model data (PRINT, HCOPY, GENLIST) and for deleting temporary
AISIM files (DELFILE). These comnards are summarized in the cammand
summary in figure 5-1 and described in the following sections. These
camands may be entered only while in the AISIM READY level of operation
(i.e., when the user has received an AISIM READY prompt).

Rlert b aat Sk aal Act et ead

W T TS, . O - . > - ."\."\—'-"‘V‘\‘.j;‘-

ANALYZE [PROJECT (project)]
A [P(project)]

BACKUP [PROJ.CT (project)]
[P (project)]

CHANGE [PROJECT (project)}
C [P (project)]

DELFILE {PROJECT (PROJECT)]

DELF [P (project)]
DESIGN [PROJECT (project)]
D [P(project)]

EDIT (PROJECT (project) |

(P(project)]
END

GENLIST [PROJECT (project)]
GLIST [P (project)]

HCOPY [PROJECT (project))
HC [P(project)]

HELP

LIBRARY
LIB

LIST
L

LISTOFF
LISTON
MSGOFF
MSGON

PRINT [PRINT (project)]
P {P(project)]

REPLOT [PROJECT (project)]
RP [P(project)]

RESTORE [PROJECT (project))
[P(project)]

Figure 5-1.

e e s e e ee e
e DA P L L P TR T

et AN e e e e et Ca e
PLIN PR NS XS PV WY R IR AT I S L ST

A A

i Sl Sy it gl Aod Sk Jiuh 0 Shath feugh Bsk ndh Sas S ton e

[NOXLATE] (TERM(terminal)]
[N] [T(terminal)]

"TERM(terminal)]
[T (terminal)]

[TERM(terminal)]
[T(terminal))

[TRACE]

[TERM(terminal)]
[T(terminal)]

[TERM(terminal)]
[T(terminal)]

(TERM(terminal)]

[T(terminal))

AISIM READY Level Command Summary

5-2

Daian ks e b e & A E AR T

AISIM READY / ANALYZE

S.1 INITIATING AN ANALYSIS SESSION
Simulation of the model developed under the DUI sublevel (see section 5.5)
is accamplished through commands available in the AUI sublevel. The AUI
is accessed frcm the AISIM READY level by issuing the following command:
ANALYZE [PROJECT(project)) [NOXLATE] [TERM(terminal)]
A [P(project)] [N] [T (terminal)]
where:
[PROJECT (project)] is an optional parameter indicating the project

database to be used. If omitted, the project is assumed to be the last
project specified in a previous AISIM READY level command.

[NOXLATE] is an optional parameter indicating that, FOR THIS ANALYSIS
SESSION ONLY, no translation from the "project" database is to be
performmed, and simulation input fram a previous translation is to be used.
The "previous translation" must have been performed. If this parameter is
amitted, the translation will be performed.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the temminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid temminal types are the following:

HP -~ HP2647A or HP2648A terminal

HP23 -~ HP2623 terminal

TEK - TEK4105 terminal

VI - VIl00 terminal with Selanar graphics

The system will respond with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0

TERMIMAL: Terminal type specified in command or default
PROJECT: Project specified in comwmand or default
USER: Userid

XLATE/NOXLATE: XLATE/NOXLATE, depending upon command.
ENTER YES TO PROCEED, NO TO ABORT...

Typing yes will cause the system to complete the transfer to the AUI
sublevel. A 'beep' will be given at the temminal and the AUI prompt (#)
will appear when the system is ready to accept commands at the AUI
sublevel. These camnands are discussed in section 7.

During an Analysis session, various files are created. The translator
creates a file called project.XLT. This file is a formatted file
containing all of the entity data from the project data base, and it is
used as input to the simulator. An analysis data base called project.PLT
is created to hold any plot data generated by the simulation which the

5-3

,,,,,,,,,,,,

NI B Sie ih h t Bt B e e B e m e aa e

T RN W RN T T rw v Wy ARG

user wishes to save. This file is not created if a copy already exists.
The simulation report is stored in a file called project.RPT. Any trace
output is stored in a file called project.TRC. All of the above files
remain at the end of a simulation run. Three temporary files,
PLOTDEF.DAT, PLOTDATA.DAT and SAVEPLOT.DAT, are used during an Analysis
session to store plot data and definitions, and they are deleted when the
simulation campletes.

S N -.’.'

> Ty T T T

AISIM READY , BACKUP

5.2 BACKING UP A DATABASE
To provide a backup of a project database, especially useful for saving a
copy of the present model design before it is altered or modified, enter
the following command:

BACKUP [PROJECT (project)]

BACKUP ([P (project)]
where:
[PROJECT (project)] is an optional Parameter indicating the project

database to be backed up. If amitted, the project is assumed to be the
last project specified in a previous AISIM READY level command.

The system respords with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0

TERMIMAL: Default terminal type

PROJECT: Project specified in command or default
USER: Userid

ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause a backup copy of the project to be stored in a
database file named project.BCK, A "no" response will abort the cammand.

5-5

. AD-R164 556 ASIN (AUTOMATED INTERACTIVE SINULATION MODELING SYSTEM)
- YAX VERSION USER‘.. (U> HUGHES RIRCRAFT CO FULLERTON CA
GROUND SYSTEMS GROUP S KNEEBURG FEB 85 ESD-TR-83-127

UNCLASSIFIED F33615-81-C-5098 F/G 972

R

I -

[l
s

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS — 1963 - A

...

g
................. R -

DA A AN A A i RN e R

AISIM READY / CHANGE
5.3 CHANGING THE CURRENT PARAMETERS
The current parameters of an AISIM session (PROJECT and TERMINAL) can be

changed via the CHANGE command. The syntax for the CHANGE command is as
follows:

CHANGE [PROJECT (project)) [TERM(terminal)]
C [P(project)] [T(terminal)]
where:

(PROJECT (project)] is an optional parameter indicating the new project
database to be used. If amitted, the project default value remains
unchanged.

[TERM(terminal)] is an optional parameter indicating the new terminal type
to be used. If amitted, the terminal type default value remains
unchanged. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal

HP23 ~ HP2623 terminal

TEK - TEK4105 terminal

VT - VT100 terminal with Selanar graphics

This command causes the current default project and terminal to be set to

the names entered. The current default parameters are then listed as
follows:

CURRENT PARAMETERS IY EFFECT:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Default terminal type
PROJECT: Default project

USER: Userid

LR LT Te WS TYT O Y

AaiCCI S AR A Al SN A e g & SUE oAl Sl oot b et el d Sr a2 Rarente e SIS

AISIM READY / DELFILE
5.4 DELETING PROJECT FILES

The DELFILE camnand is used to delete the following five files for a
specified project:

1) project.XLT
2) project.WDB
3) project.RPT
- 4) project.LST
5) project.TRC
To delete these files, the user types:
DELFILE (PROJECT (project)]
DELF (P(project)]
where:
[PROJECT (project)] is an optional parameter specifying the project name
for the files. If amitted, the project is assumed to be the last project
specified in a previous AISIM READY level command.
The system respords with the following:
CURRENT PARAMETERS IN EFFECT:
VERSION: PRODUCTION VERSION 4.0
TERMINAL: Terminal type default
PROJECT: Project specified in command or default

USER: Userid
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the files to be deleted. A "no" response will
abort the command.

AISTM READY / DESIGN

5.5 INITIATING A DESIGN SESSION

A project database is created/modified using the commands available in the
DUI. The DUI is accessed fram the AISIM READY level by issuing the
following command:

DESIGN ({PROJECT (project)] [TERM(terminal)]

D (P(project)] [T(terminal))]

where:

[PROJECT (project)] is an optional parameter indicating that the desired
project file to be acted upon by the camand is "project", where "project"
is a standard alphanumeric file label containing 1-8 characters beginning
with an alpha character and containing no special characters or imbedded
blanks.

{TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If amitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level command. The valid temminal types are the following:

HP - HP2647A or HP2648A terminal

HP23 - HP2623 terminal

TEK - TEK4105 terminal

VT - VT100 terminal with Selanar graphics

The following is displayed after entering this command:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0

TERMINAL: Terminal type specified in the cammand or default
PROJECT: Project specified in the command or default

USER: Userid

ENTER YES TO PRCCEED, NO TO ABCRT...

Typing YES causes the campletion of the level transfer. The temminal will
display:

CREATING WORKING DATABASE.....
Followed by:
ee...COPY COMPLETE

The DUI prompt (*) will appear when the system is ready to accept commands
at the DUI sublevel, These cammards are discussed in section 6.

The project database is stored in a database file named project.DBF. The

working copy of the database is stored in a database file named
project .WDB.

5-8

"ol g

AISIM READY / EDIT
5.6 VIEWING OUTPUT REPORTS

To access the model simulation report or model trace interactively on the
terminal (via the EDT editor), enter the following command:

EDIT {PROJECT (project)]

EDIT [P(project)]

or
EDIT [PROJECT (project)] [TRACE]
EDIT (P(project)] [TRACE]
Result:

The EDT editor is entered with the file to be edited set according to the
project. All EDT editor camands can be used on this file. The file is
either the project report file (this is the default) or the project trace
file. See section 11.3 for a brief discussion of relevant EDT text editor
commands.

e e e N,
...............
R e T S T TP I

. I R P S P St S R BT TR Y
PO UL S

..............

SRR A Ne A e i -2 Sk '8 (o A AR Sl M N Al g R T T T P 9 v ¥ o

AISIM READY / END
5.7 RETURNING TO VAX/VMS READY LEVEL

To return to the VAX/VMS Ready level fram the AISIM READY level, the user
types the command: .

END

The system will return to the VAX/VMS Ready Level and the screen will -
display

$

5-10

AISIM READY / GENLIST

5.8 CREATING A MODEL LISTING
The GENLIST cammand is used to produce a listing of a model without having
to enter the AUI level and verfomm a camplete translation of the model.
The listing is identical %o the Initialization Report section of the
output report (see the section on AISIM Simulation Results Reporting).
Elaments of this report are:

1) Global Constant Definition

2) Table Definition

3) Global Variable Definition

4) Item Definition

5) Queue Definition

6) Resource Definition

7) Architecture Legal Path Definition

8) Action Definition

9) Process Definition

10) Load Definition

11) Scenario Definition
To obtain a listing, the user types:

GENLIST [PROJECT(project)] [NOXLATE]) [TERM(terminal))

GLIST [P (project)] (N} (T (terminal)]
where:
{PROJECT (project)] is an optional parameter specifying the project
database for which a listing is desired. If amitted, the project is
assumed to be the last project specified in a previous AISIM READY level
camarnd.
[NOXLATE] is an optional parameter indicating that the listing of the
model will be fram a previous translation of the model. If this parameter
is amitted, a translation will be performed. (The translation listing is

stored in a temporary file; the user's current translation file, if there
is one, is not affected by this procedure.)

5-11

AR AR Y

(TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If cmitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level cammand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
) HP23 - HP2623 terminal

TEK - TEK4105 terminal

VI -~ VT100 terminal with Selanar graphics
The system responds with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0 _
TERMINAL: Termminal type specified in cammand or default

PROJECT: Project specified in command or default

USER: Userid

XLATE/NOXLATE: XLATE/NOXLATE, depending upon cammand
ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the listing to be created and a copy to be
autamatically printed. A "no" response will abort the cammand.

The listing is stored in a file named project.LST.

5-12

LR S I 2 e I St A e S i M T S e A S vt Zi i il Jan i ARl N odh s g Benm e
T. .. R N) L N T T . Y T g ™ T VW~ W~ W=~ &~ w~¥. - %

AISIM READY / HCOPY

5.9 HARDCOPY OUTPUT OF THE PROCESS FLOWCHARTS

Hardcopy graphics of Process flowcharts are obtained in the Hardcopy User
Interface (HUI). The HUI is accessed €ram the AISIM READY level by
issuing the following ~cmmand:

e o e aa

HCOPY [PROJECT(project)] [TERM(terminal)]
HC [P(project)] [T (terminal)]
where:

[PROJECT (project)] is an optional parameter indicating the project
database with the Processes of interest. If amitted, the project is

assumed to be the last project specified in a previous AISIM READY level
cammand.

[TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If amitted, the terminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level camand. The valid terminal types are the following:

HP - HP2647A terminal
HP23 - HP2623 terminal
TEXK -~ TEK4105 terminal

The system will respond with the following:

CURRENT PARAMETERS IN EFFECT:

VERSION: PRODUCTION VERSION 4.0

TERMINAL: Terminal type specified in the cammand or default
PROJECT: Project specified in cammand or default

USER: Userid

ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the HUI to be invoked. The system will then
prampt the user for all required information (see section 9 on the HUI).

Note: This function is not available on a VTl00 terminal.

i 5-13

._\‘.....,... .

. LY
P PR AL

.......

AISIM READY / HELP

5.10 OBTAINING HELP FROM THE SYSTEM I

To obtain help from the system, type the following cammand:
HELP

The user will receive summary help information on all commands.

5-14

Y

RN an am o o an g L on amanan g om0

P

e At e ooy

Lamt 4

DR . om

AISIM READY / LIBRARY

5.11 EXFRCISING THE LIBRARY FACILITY

The Library User Interface (LUI) allows the user to do the following:

1. Move entities fram a model project database into a storage area
called a "buffer".

2. Move entities fram a "buffer" into the database of another model
project.

3. Move entities from a "buffer" into a library of model entities.
4, Move entities fram a library to a "buffer".

5. Convert a pre-version 4.0 project database to a version 4.0
canpatible project database

The LUI is entered by issuing the commnand:
LIBRARY
LIB

The system will respond with the prompt:
LIBRARY READY

and the user may invoke any of the LUI sublevels listed in the LUl Command
Summary (see section 10).

AR

........
.....

AISIM READY / LIST
5.12 LISTING THE CURRENT OPTIONS
To list the current options in effect, type the following cammand:
LIST
L

The system will display the current options in effect, including PROJECT,
USER, VERSION, and TERMINAL.

5-16

A e T e T e e T e, L R AL e et e Te e .
R IR SR T ST P SN R

...............

e T——y——————

AISIM READY / LISTCN

5.13 LISTING THE COMMAND PROCEDURE LINES

If a user is having problems fram the AISIM READY level or LIBRARY READY
level which may stem from missing system files or an operating system
oroblem, the user can set a flag so that all of the files which control
the execution of an AISIM session will be displayed as they are executed.
This flag is set by typing the following cammand:

LISTON

When this option is in effect, all VAX/VMS commands which set up an AISIM
session will be displayed at a user's terminal as they are executed.

k Viewing the cammands as they execute may help a user determine where a

problem is occurring.

5-17

A S g B et oy

AISIM READY / LISTOFF
5.14 DISABLE THE LISTON OPTIONS)
In order to disable the LISTON option, i.e., to inhibit the displaying of
VAX/VMS commands as they are being executed, type the following cammand:
LISTOFF
This fﬁatmand disables the command listing mode initiated by the LISTON :
camnarda,

5-18

............................... RIS L RN T S L S S NI ST Y
_.'-_n.‘--.~\~_~.-.' TR T T T T UL T T Ve T I DR R A
LRI i o Bl S ta o T g e g D S I N T I R PRI PRI I TN Y B Sa N St gyt)y, -

Y R I I ———— e " — - y
LT . g NS -7 - St - . R L R N e T T T T I Yy T~ Y~ ¥~y -~ % -, -~

AISIM READY / MSGOFF

5.15 DISABLE AISIM MESSAGES

Upon invoking each AISIM function, the user is presented with the current
version, terminal type, project, etc., and asked if (s)he wants to
continue or abort. These messages and prampt can be suppressed by typing
the following command:

MSGOFF

When the user invokes a function, control will be transferred directly to
that function without further prompting.

5-19

......

S R T R R T T S O I I - . W Yt . LR
. PRI I R ST IR A e S S LT et e . - Y . .
o et et o D “ R L W, v A A e A RS A A

AISIM READY / MSGON
5.16 DISABLE MSGOFF FEATURE
If the user has disabled the AISIM messages and prompts via the MSGOFF

cammand, the messages and prampts can be turned back on via the following
cammand :

MSGON

Following this cammand, the user will receive the version, terminal type,
project, etc. messages and prampt to continue whenever an AISIM function
is invoked.

5-20

TN
PGP, o PP Y

MRS S e il i SIvh SN L e 0 S0 Sot a0 I 4

AISIM READY / PRINT
5.17 PRINTING OUTPUT REPORTS

To request printing of the model output report, type the following
camand :

PRINT (PROJECT (prozect)]
P [P(project)]
where:

PROJECT (project) is an optional parameter indicating which project's
report file is to be printed. If omitted, the project is assumed to be
the last project specified in a previous AISIM READY level command.

Result:

The output report (project.RPT) of a project is printed. This is a report
of the stamdard results of a simulation run.

NOTE: The output report is automatically printed at the conclusion of an
Analysis session.

5-21

W e g W W e L aoman o4
NaltadN .~ A PRI g PN e W N N R R TR mmr—wa— i i R o —— E At atal aheay -
. N o Bl S = v 3
PRSI DN oA G ol oo

AISIM READY / REPLOT

5.18 INITIATING A REPLOT SESSION

The Replot User Interface (RUI) allows the user to display plots which
were saved during previous Analysis sessions. The cammand to invoke the
RUI is as follows:

REPLOT [PROJECT (project)] (TERM(terminal)]
R [P(project)] [T(temminal)]
where:

[PROJECT (project)] is an optional parameter indicating the project .
database used in creating the saved plots. If omitted, the project is

assumed to be the last project specified in a previous AISIM READY level

camand.

(TERM(terminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the temminal type is assumed to be
the last terminal type specified in a previous AISIM READY or LIBRARY
READY level cammand. The valid temminal types are the following:

HP - HP2647A or HP2648A terminal

HP23 - HP2623 terminal

TEK - TEK4105

VI - Vr100 terminal with Selanar graphics

The system will respond with the following display:

CURRENT PARAMETERS IN EFFBCT:

VERSION: PRODUCTION VERSION 4.0

TERMINAL: Terminal type specified in cammand or default
PROJECT: Project specified in command or default

USER: Userid

ENTER YES TO PROCEED, NO TO ABORT...

A "yes" response will cause the system to complete the transfer to the
RUI. The RUI prompt ($) will be displayed when the system is ready to
accept cammands at the RUI sublevel. ©

5-22

(BTl Tk Bl el it Al il B Bt Aad B s dh a gk Aok ben B seme o e oo

AISIM READY / RESTORE
5.19 RESTORING A DATABASE (AFTER A CATASTROPHE HAS OCCURRED)

This camand is used in conjunction with the BACKUP command. If the user
was editing the original database and had issued a BACKUP cammand against
this database, then a copy of the oriqginal database exists. The RESTORE
camand causes the damaged original database to be replaced with this
backup copy.

To restore a previously backed-up database (only necessary if a
catastrophe has occurred which altered the project database, or it is

desirable to restart a model from a known configuration), enter the
following cammand:

RESTORE [PROJECT (project)]

RESTORE [P (project)])
where:
[PROJECT (project)] is an optional parameter indicating the previously
backed-up project database to be restored. If amitted, the project is
assumed to be the last project specified in a previous AISIM READY level

camard.

The backed-up copy of the database, called project.BCK, will be copied
onto the damaged database and will have the database name project.DBF.

5~23

......
......

ERE AR T ICA A D S i it Aol et it e B ppp |

T

SBCTIONM 6

h DESIGN USER INTERFACE (DUI)

The DUI and its lower levels are used to define a model by creating,
modifying, or deleting AISIM model entities. The Action, Constant, Item,
Load, Process, Queue, Resource, Scenario, Table, and Variable entities are
created and edited at the DUI level, using the EDIT camand. The Process
entities which represent operations in the modeled system are created and
edited at a sublevel of the DUI level called the Process Editor Interface
(PEI). The PEI is invoked by issuing the EDIT command (at the DUI level)
and specifying a Process as the entity to be edited. A system
architecture and its related Legal Path Table, nodes, and links are
defined in a second sublevel of the DUI called the Architecture Design
Editor (ADE). The ADE is invoked by issuing the ARCH command at the DUI
level.

When creating and editing entities in the DUI level, the system prompts
the user for further informmation by use of forms. Each form specifies the
required and optional attributes of its respective entity-type. The areas
on which information is to be entered appear in "reverse video" (dark
characters on a light background), and indicate the attributes that are to
be supplied by the user.

Each time the user presses the keyboard carriage return key, the character
cursor is positioned to the start of another designated area. The user
enters parameters requested by the form by keying in the desired
alphanumeric information. If the user changes his mind about the
parameters previously keyed in, he may alter them by merely writing over
the old information. When the user is satisfied with the contents of the
form, he inputs it to the camputer by exiting the form. Below is a
canplete description of the use of fomms.

While the user is in the DUI, all changes are made to a working copy of
the user's database. When the user issues a SAVE cammand during or at the
end of the DUI session, the working database is copied back into the
user's real database. This procedure enables the user to change his/her
mind about changes made in the working database and to protect the user's
real database in case the computer crashes during a DUI session.

The AISIM DUI commands used to input, modify, and delete entities from the
model, are illustrated in figure 6-2 and described on the pages that
follow it.

6-1

USE OF THE FORMS EDITOR

This section describes the use of the forms editor on the various
terminals. Figure 6-1 is a chart which describes the keys used to achieve
specific movements through a form. Following the figure is a description
of each of the ways of moving through a fomm.

ap DOWN LEFT RIGHT ENTER +FIELD -FIELD

HP26472 F1 F2 F3 (F4 FS <cr> F6
HP2648A Fl F2 F3 F4 FS <cr> F6
HP2623 F1 F2 F3 F4 FS <cr> F6
TEK4105 Fl F2 F3 F4 FS <er> F6
VT100 il \L, <= | = PF1 <> PF2

Figure 6-1. Temminal Profiles

UP - If the cursor is in a block of fields, such as Resource attributes,
the cursor will move up to the field above it., If the cursor is in a
single field or at the top of a block, the cursor will move to the end of
the next field above it. If there are no fields above it, the cursor will
wrap to the end of the last field in the form.

DOWN - If the cursor is in a block of fields, such as Resource attributes,
the cursor will move down to the field below it. If the cursor is in a
single field or at the bottom of a block, the cursor will move to the
beginning of the next field below it. If there are no fields below it,
the cursor will wrap to the beginning of the first field in the form.

LEFT - The cursor will move one position to the left in the current field.
If the cursor is at the beginning of a field, it will move to the end of
the previous field. If the cursor is at the top of the form, it will wrap
to the end of the last field in the fomm.

RIGHT - The cursor will move one position to the right in the current
field. If the cursor is at the end of a field, it will move to the
beginning of the next field. If the cursor is at the end of the form, it
will wrap to the beginning of the first field in the fomm.

ENTER -~ Cut the form and send the data in the form to be processed by the
AISIM system.

6-2

L Bl o PR Sum b AR an 1 den B ane Tl s St —guann e T N W W W e T

+FIELD - Move the cursor to the beginning cf the next field in the form.

If the cursor is at the end of the form, it will wrap to the top of the
form,

-FIELD - Move the cursor to the end of the previous field in the form. 1If
the cursor is at the top of the fomm, it will wrap to the end of the last
field in the form.

The BACKSPACE key can also be used to back up and make changes in a field.

Each time a user advances fram one field to the next, the terminal 'beeps'
to signal the change in fields.

6-3

o, .- . - - - - -
SRR S S BIP ARRIRPINAPR

Ul INVOKED N0 - UL .
DESIGN (D) DESIGN 0B TERHINATED
ESTABLISHED L
FOR OPYING
Py (0) N EXISTING |)
EMITY

FOR ELININ-
DELETE (DEL) IATING AN

ENTITY
Y [CREATE OR | T
—{mn (E) ICHANGE N
J ENTITY
Y DISPLAY
HELP vaulD Ul
e — |
4
LIST ENTI-
UsT (L TIES OF SPECT—
IFIED TYPE
' 4
COPIES WORK-
SAVE ING D8 INTO 1
REM B)

8
20C TWOKED
L@u @) }-—Jvm comwos .
ah1OLE

Figure 6-2., Design User Interface Commands

6.1 DUT COMMAND SUMMARY

Figure 6-3 contains a summary of the DUI level commands.

ARCH
A

CoPY {entity-typel,{existing-name}, {new-name}
C

DELETE {entity-type},{entity-name}/*
DEL

EDIT {entity-type},{entity-name}, [OLD/NEW]
E

END
HELP

LIST {entity-type}
L

SAVE

Figure 6-3. DUI Command Summary

6-5

@ T T, - .-‘-‘:;..(.'-;_-:;_..’\.;_'-""-;\.:\
W SIS, U SIS LS

MM T 1 e e e encn a e e T N W T N U U~ YT gy~ -

DUI / ARCH

6.1.1 DUI COMMAND: ARCH

The ARCH cammand is used to invoke the Architecture Design Editor (ADE).
This camand is valid only in the DUI Ready Level.
COMMAND SYNTAX:
ARCH
A
FUNCTION RESULT:
The ADE is invoked so that the architecture is built under the project

designated by the DESIGN cammand. A # prampt is provided for the user to
input ADE commands. These cammands are discussed in section 6.3.

6-6

ey e Ty T T eT e Ve T8 Teg TR W e e -’ - >
. fald A it e S0 R SR AR A Y AR A TR A A D A S n Sur. S -t SaaP i aar 2an o m i L ISR —
, ML S AA RS P S W ST e -

bur / copy
6.1.2 DUI COMMAND: COPY

The COPY command is used o create a cooy of an existing entity.

COMMAND SYNTAX:
copY {entity-tyve},{existing-name!, {new-name}
C
where:
{entity-type} is a required parameter indicating any valid entity type.
Entity-type may be any of the following:

Entity-type Acceptable Abbreviation

Action A
Constant cC
Item] I
Load L
Process P
Queue Q
Resource R
Scenario S
Table T
Variable v

{existing-namel is a required parameter identifying the existing entity whose
parameters are to be duplicated.

{new-name} is a required parameter which specifies the name of the new entity
whose parameters are duplicates of the "existing entity".

If entity type, existing-name or new-name is missing or invalid, the user
is prampted.

A carriage return entered in response to any prompt aborts the command and
returns the user to the DUI Ready state - * prompt.

e o anan

ey

6~7

LAY e D SR SR . - . . e e
LI DA - O PR . e e e

A LI . e .
R - e . e e el e e T e T T T LT T e T
uﬁil_.—ﬂ-.l TR SO N RS WA PUPRORA IO,

e T T —

DUI / DELETE

6.1.3 DUI COMMAND: DELETE

The DELETE command is used to eliminate a named entity of a given type
fram the user database. A restriction on the use of this cammarnd is that
Resources associated with architectural nodes or links cannot be deleted
outside of the Architecture Design Editor sublevel,

COMMAND SYNTAX:

DELETE {entity-type},{entity-name}

{entity-type}, {entity-name},...,{entity-name} -
{entity-type},*
DEL
where:

{entity-type} is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2.

{entity-name} is a required parameter indicating the name of the entity to
be deleted. It is permissible to give a list of entity-names, of the same
type, each manber of which is separated by a coamma.

* is a parameter used indicate all of the entities of the specified type
are to be deleted.

If entity-type or entity-name is missing or invalid, the user is prompted
for ¢ valid parameter.

A carriage return in response to the prompt aborts the command, and the
user is returned to the DUI Ready state - * prompt.

FUNCTION RESULT:

If the named entity is not a Resource associated with a architectural node -
or link, the entity will be deleted fram the user's working database. 1If

the entity is a Resource associated with a node or link, the user will be

given the message:)

" entity " IS ASSOCIATED WITH THE ARCH. AND CAN ONLY BE DELETED IN THE ADE . #
where " entity " is the name of the entity to have been deleted.

When there is more than one such Resource listed in the command to delete :
the user will be given the above message for each one. R

. » P - . - » . . - - . - . - - . -~ . - .
L R T AL Tl S T VLT S T St A T T P L L R R ST ST P R SR T
e AL SN Y - - OIS PRI A MBI WU AT VAP S SR UL WL WAL DU PR Wy

T T rp——————

DUI / EDIT

6.1.4 DUI COMMAND: EDIT

The EDIT cammand is used either to create an entity, or to change an
existing entity.

COMMAND SYNTAX:
EDIT {entity-type},{entity-name}, [OLD/NEW]
E

where:

{entity-type} is a required parameter indicating any valid entity type.
The vaid entity types are listed in section 6.1.2.

{entity-name} is a required parameter indicating the name cf the entity to
be edited.

[OLD/NEW} is an optional parameter indicating that the named entity is to
be created (NEW), or that the named entity exists (OLD) anmd is to be

changed. If the [OLD/NEW] parameter is entered incorrectly, the user is
prampted for confirmation to continue the command. The default for this

parameter is OLD.

FUNCTION RESULT:

If the entity-type specified is Process, the PEI level (see section 6.2)
is autamatically invoked. If any other valid entity type is specified,
the user is presented with a form to describe that entity. The forms for
the entities are shown in figures 3-1 through 3-4, 3-6 through 3-8, 3-39,
and 3-40. The user must fill out the form to input the completed entity
into the working database. The user is then returned to the DUI Ready
state - * prampt.

...........
- o PR

VY w v v -

. R L
AR I Dl NP G YL | 3

DUI / END

6.1.S5 DUI COMMAND: END

The END cammand is used to terminate a DUI session.
COMMAND SYNTAX:

END
FUNCTION RESULT:

The Design session is ended. The working database is closed. If a SAVE
camand has not been given since the last EDIT cammand, the user is asked
if the working database is to be saved. The query is:

SAVE (YN)?

If the user answers "Y", the working database is saved into the real
database and the session is ended. Control is passed to the AISIM READY
level (level 3). If the user answers "N", the session is ended and the
working database is not saved. Control is passed to the AISIM READY level
(level 3). Depressing the RETURN key in response to the SAVE query aborts
the END cammand, and returns the user to the DUI Ready level - * prampt.

6-10

P T T B N o P == T T T T T T e
N - . o D A S .- - el . T Y e . -t N - - . . -

DUI / HELP

6.1.6 DUI COMMAND: HELP

The HELP command lists the cammands currently available to the user during
a DUI session.

This comand may be used any time during a DUI session.
COMMAND SYNTAX:

HELP
FUNCTION RESULT:

The acceptable cammarus (i.e., the ones valid at the current level) are
listed.

HELP displays the following commands:

ARCH A copy c DELETE DEL EDIT
E END LIST L SAVE

6-11

P

S

''''''''''

........

DUI / LIST

6.1.7 DUI COMMAND: LIST

The LIST command displays all entities of a specified type. Included with
each entity is its name and description.

COMMAND SYNTAX:
LIST {entity-type}
L

where:

{entity-type} is a required parameter indicating any valid entity type.
The valid entity types are listed in section 6.1.2.

If {entity-type} is missing or invalid, the user is prompted for a valid
entity type.

A carriage return entered in response to the prompt aborts the command,
and the user is returned to the DUI Ready state - * prampt.

FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type.

6~12

T T g——

..........

RIS e Al Sy

DUI / SAVE

6.1.8 DUI COMMAWD: SAVE

The SAVE cammand copies the contents of the working database into the
user's permanent database.

COMMAND SYNTAX:
SAVE

FUNCTION RESULT:

The real database is replaced with the contents of the working database,
and the user is returned to the DUI ready state - * prampt. The cammand
is useful when the user is defining a large system. With the SAVE command
the user saves the model design up to the point at which the cammand is
given. This protects that portion of the design from computer failures.

6-13

. .
. ~ -
.. R T N TR TIPS SRR S
PP T N . LA
T e e et e e e LT A T IR SN Y
LB SR I S el S IS S PSR AP I I A N

R T R T T T Y

6.1.9 Termination of a DUI Sess:on

As mentioned earlier, a DUI session is terminated by issuing the END
camand. Syntax and results are described in the preceeding section. The
DUT session is ended. The working database is closed. If a SAVE cammand
has not been given since the last EDIT camand, the user is asked if the
working database is to be saved. The query is:

SAVE (YMN)?

If the user answers "Y", the working database is saved into the real

database and the session is ended. If the user answers "N", the session

is ended and the working database is not saved. Depressing the RETURN key

in response to the SAVE query aborts the END cammand, and returns the user -
to the DUI Ready state. When the SAVE query is answered, control is

returned to the AISIM READY level and the AISIM READY prampt is displayed.

6~14

6.2 Process Editor Interface (PEI)

The PEI, coupled with the capabilities of the graphic terminal, allows the
user to describe graphically the logical flow of an operation which he
wishes to model. The PEI is used to build Processes which model
man-machine interaction as well as data processing functions (software
logic). A Process is composed of Primitives which are symbols that
represent the individual steps in an operation. Using the PEI cammands
which are described below the user arranges the Primitives in an order
that describes the Process.

6.2.1 Use of the PEI

The system transfers control from the DUI to the PEI when the user issues
the following cammand:

EDIT PROCESS, {entity-name}, [OLD/NEW]
E P,{entity-name}, (OLD/NEW]

where:

{entity-name} is required parameter indicating the name of the Process to
be edited.

(OLD/NEW] is an optional parameter indicating that the named entity is to
be created (NEW) or that the named entity exists (OLD) and is to be
changed. If the (OLD/NEW) parameter is entered incorrectly, the user is
prompted for confimmation to continue. The default for this parameter is
OLD.

When the PEI is entered, the screen is blanked. If a Process has already
been created, the first screen of Primitives is displayed fram the START
symbol down. If the Process is new, a form is displayed which requests
information about the Process (see section 3.8). The user must complete
the form to input the PROCESS into the database. The form is cleared from
the screen ard the START and END Primitives of the new Process are
displayed on the screen. At this point, a pound sign (#) prompt will be
displayed indicating that the user may issve any of the PEI camands. The
PEI commands, which are described on the following pages, are used to
select, position, and describe the Primitives to create a Process., A
sample Process is shown in figure 6-5 (section 6.2.10). In the following
camand descriptions, "position" refers to the numbers appearing at the
left side of the figure.

There are two modes in the PEI: DRAW and NODRAW. Under DRAW mode, all
changes to Primitives on the screen are reflected in the display. Under
NODRAW mode, changes are not reflected in the display until the user
explicitly requests that the display be updated. When the user first
enters the PEI, DRAW mode is the default. If the user changes the mode,
the change will stay in effect for all subsequent uses of the PEI until
changed by the user or the user exits the DUI. These modes are explained
more fully in the PEI DRAW and NODRAW cammands (sections 6,2.6 and
6.2.11).

6-15

B AR i At el o Sa e na Sra S 4 e ea s g e A R SIS

BOTTOM
B

Change {position}
c

DELETE {first position},[number of consecutive positions]
DEL

DOWN [number of positions]
D

DRAW
DR -

END
E

HELP

HOLD {position}
H

MENU
M

NODRAW
N

PLACE {Primitive},[position]
P

REDRAW
RED

TOP
T

UP [number of positions]
U -

Figure 6-4. PEI Command Summary

6-16

S Sttt e e e e e T T T T e e RIS TN :
, .. - . o K [l S S) et T T T s » » " 4 "m . w'a - s LI ~ - b - -
PR, . Y Y -t Wy s, (ORI J AN IR NN A TR A L) - ST o,
L R SRR . I I I T T % P R SR P R I TR TS SR L RS WA .'L.:_.'-‘-'-__}:m\) b

- P 2 . e e 2 e a Ty
e ——— SN Ty w

LG ol oSl et st B it s S gt B B | ?

PEI / BOTTOM

6.2.2 PEI COMMAND: BOTTCM

The Bottom cammand is used to display the last six Primitives in the
current Process structure.

COMMAND SYNTAX:
BOTTOM

B

FUNCTION RESULT:

The bottom of the Process structure being edited is drawn from the END
symbol up. The END symbol is always the last position of a Process
structure.

N T T ——

PEI / CHANGE

6.2.3 PEI COMMAND: CHANGE

The CHANGE cammand is used to modify the user defined parameters of a
Primitive within the current Process structure.

COMMAND SYNTAX:

CHANGE {position}

C
where:
{position} is a required parameter indicating the position of the
Primitive, within the Process structure, whose parameters are to be
changed.
FUNCTION RESULT:
When the CHANGE command is invoked, the user is presented with a fomm
corresponding to the Primitive at the indicated position. The user may
change any or none of the attributes of the Primitive. If the user is in
DRAW mode and the Primitive being changed is on the screen, the Process

structure is then redisplayed with any changes made; otherwise, the screen
remains unchanged.

PEI / DELETE
6.2.4 PEI COMMAND: DELETE

The DELETE cammand allows the user to delete a single Primitive, or a
range of Primitives, fram the current Process-structure.

COMMAND SYNTAX:
DELETE {first position}, [number of consecutive positions])
DEL

where:

{first position} is a required parameter indicating the position of the
first Primitive to be deleted.

[nunber of consecutive positions] is an optional parameter indicating the
number of consecutive positions to be deleted, starting with the Primitive
indicated by the {first position} parameter. If this parameter is
anitted, the default condition is to delete only the Primitive at the
position indicated by the {first position} parameter.

FUNCTION RESULT:

The Primitives indicated by the {first position} parameter and the
optional parameter are deleted fram the Process structure. The START and
the END symbols may not be deleted. Additionally, the numbers of all
Primitives being deleted must be displayed on the screen.

If the user is in DRAW mode, this simply means that the Primitives to be
deleted must be visible. If the user specifies to delete Primitives past
the end of the screen, only the Primitives on screen will be deleted.
After the delete cammand is issued, the remaining Primitives in the
stucture are scrolled up.

If the user is in NODRAW mode, the numbers of the primitives being deleted
must be on screen, but not necessarily the symbols themselves, For
example, say the first six Primitives are being displayed and the user
deletes Primitives three through six. Since the legend still shows three
through six, the user can delete the new third through sixth Primitives
even though the symbols on screen may not correspond to the Primitives
being deleted. The user should take care when deleting Primitives while
in NODRAW mode. If the user specifies to delete Primitives whose numbers
are past the end of the screen, only the Primitives whose numbers are on
screen will be deleted.

6-19

| R A R e i e s e o

lase e, o0 o
R N N N Y "Wy~ —y—v—y Y

PEI / DOWN

6.2.5 PEI COMMAND: DOWN

The DOWN cammand allows the user to "jump down" the current Process
structure an indicated number of positions.

COMMAND SYNTAX:
DOWN [number of positions] -
D
where: -
[number of positions] is an optional parameter indicating the number of
positions that the structure is to "jump down". If this parameter is not

used, the default condition is to drop the Process structure down six
Primitives, which is analogous to displaying the next page.

FUNCTION RESULT:

The Process structure jumps down the number of positions indicated by the
optional parameter, if given. Otherwise the structure jumps down six
Primitives or to the bottam of the structure if less than six Primitives
follow the last position currently displayed.

‘r: '-"'\"‘._' A N AR 'l At e et At i

N T re——— el 2 i~ N TN Y

PEI / DRAW

6.2.6 PEI COMMAND: DRAW

The DRAW cammand is used to put the user in the PEI DRAW mode.

COMMAND SYNTAX:
DRAW
DR

FUNCTION RESULT:

The DRAW cammand sets the PEI mode to DRAW mode. This mode will remain in
effect for all future PEI sessions during the current DUI session until
changed by a NODRAW command.

In DRAW mode, all changes made by a user to the portion of the Process
structure currently being displayed will be reflected in the display.
I.e., if a Primitive is changed via the CHANGE command, that Primitive
will be redrawn on the screen. If Primitives on the screen are deleted,
remaining Primitives will be scrolled up to fill the display.

If changes are made to the Process in an area which is not currently being
displayed, those changes will not be reflected in the display until the
user redraws the area in which the changes were made. For example, if the
user places new Primitives at the bottom of the Process, and the bottom is
off the screen, the new Primitives will not be displayed until the user
explicitly displays the bottom of the Process structure.

6-21

PR R PR A P I S S NP AL AL A
e s o st S NAPIL AP S .05 PSS I PP PR VL L AT I P D PR VI WAL S P A P S R AP e A SO .

O ST DT W G WA G S W W U I L T P LY S =

PR AR i S A e B S S et St et e e o e e

A R A A BRI AU /A R Al A ietn At et fere St i an s o/ o

PEI / END

6.2.7 PEI COMMAND: END

The END caommand is used to terminate and exit the PEI session.
COMMAND SYNTAX:

END

E
FUNCTION RESULT:
The PEI session is ended, the graphics display is erased, and the user is)
returned to the DUI Level,

s .v—vrvrrvvav'v-vv
. AN IIAANI O]

6-22

LT PRI P S

et st S . . . < T, .
. S S, R . Lo L “ e Tt hCH
- e PRI I T T UL I B U s e,

S S SN SN NI, PR U SUREAT YY

. P PN Ve el steun Aol aund S r_v-.T

PEI / HELP

6.2.8 PEI COMMAND: HELP

The HELP subcammand displays a list of the valid PEI commands.

COMMAND SYNTAX:
HELP

FUNCTION RESULT:

The list of valid cammands (see PEI Command summary, figure 6-4) is
displayed.

6-23 /

e e e e e e e e N Y o, - . S G e e -

. e e e e e et e e e e e e e e e e e e e e e e e e R O e e
N S A TS P P L g N LRI DRI T LN A I AP I IR A L P

- s t LIPS RPN L T e T TSI A AT AL S I I R N S
' S At ot At o et g - a2 = LY WO R WAL WAL R RO WPRT UL A W, Wl w Al R W S S P \J

LA LWL,

PEI / HOLD

6.2.9 PEI COMMAND: HOLD

The HOLD cammand allows the user to insert any valid Primitive, which is
already a part of the current Process structure, into the menu item "HOLD"
so that it may be replicated.

COMMAND SYNTAX:
HOLD {position}
H

where:

{position} is a required parameter indicating the position of the
Primitive which is to be placed in hold for the purpose of replication.

FUNCTION RESULT:

The Primitive (complete with the previously defined parameters) is placed
in hold. This item may then be replicated by using the PLACE camnand and
using HOLD as the Primitive to be placed. When a Primitive is stored in
Hold, it remains there, accessible to the user throughout the DUI session,
and thus Primitives may be moved from one Process to another. When there
is a Primitive in hold on a temminal on which the menu can be displayed
(see MENU command) , the name of the Primitive being held appears below the
menu display area preceded by an asterisk (example: *CREATE).

6~24

SRR VAT SRR SR TR S W SN W SRR WAL, ST

ACE e N e) ‘4‘

YL N

CASICIA AR Sl Sl Mot i Al ol b aman

PEI / MENU

6.2.10 PEI COMMAND: MENU

MENU is used to display the possible Primitives for a Process.
COMMAND SYNTAX:

MENU

M
FUNCTION RESULT:
The menu is a one-column list of names of the valid Primitives (see
section 3.9 for a description of the Primitives). If the menu will fit on
the screen, it is displayed to the left of the Process flowchart. If the
menu will not fit on the screen, a message will be displayed noting that

fact. The menu can be displayed on HP2647aA, HP2648A, and TEK4105
terminals. Figure 6-5 shows the Process menu.

¢ | TRAMSMITTING TEITASEC "0 2ECEIVER
; -
’ 3TART
ix’" o CotRANINIT) 0
sSICH .
IRRNCH b v
ol ALLOC
B o SR
SREATE ‘QLLXCRTE BUF! ! MF |
H ———————
XX ‘ ;
X
ENTRY e AT
AT —
FILE » INTROMXE NS INTO SYSTEN
1341 } 1 .
- Lo S copMBON |
JJ0P P]A—
. 03 4
AENOVE . L*._u SONERATE RANDOR NUNDER
EIET i |
! —
g;‘:‘ ‘. R mLTIRLY]
asro S | '
YEST | L_______‘"’“;'" | ruice avermee Tires am
TRACE b i
o AP !
L S ! 15 3ESIND MO l
| X DST™M T messeE LOKTH

Figure 6-5., Process Display with Menu

6-25

| awean e dng A

N

PR A e e B i 8 s Gt 4 "‘"“"1

PEI / NODRAW

6.2.11 PEI COMMAND: NODRAW

The NODRAW cammand is used to put the user in the PEI NODRAW mode.
COMMAND SYNTAX:
NODRAW
N
FUNCTION RESULT:
The NODRAW cammand sets the PEI mode to NODRAW mode. This mode will

remain in effect for all future PEI sessions during the current DUI
session until changed by a DRAW cammand.

In NODRAW mode, no changes which are made to Primitives in the Process are
reflected in the display until the display is explicitly redrawn by the
user, Cammands which can be used to update the display are TOP, BOTTOM,
UP, DOWN and REDRAW., The user should take care when deleting Primitives
while in NODRAW mode to guard against deleting necessary Primitives since
the screen is not updated after a DELETE is performed.

6-26

{ .. -

B A R S i it st e i Sk otie Bhadier aiis Sl 3

PEI / PLACE

6.2.12 PE] COMMAND: PLACE

The PLACE cammand is used to put a Primitive at a position in a Process.
The Primitive may be placed in any position within the Process structure
except prior to “he START symbol or after the END symbol.
COMMAND SYNTAX:

PLACE {Primitive}, [position]

P

where:

{Primitive} is a required parameter, indicating any valid Primitive or
HOLD.

[position] is an optional parameter indicating any valid position within a
Process structure, (i.e., after the START symbol and before the END
symbol). The position of a Primitive in a Process is indicated by the
numbered colum to the left of the flowchart representation of a Process.
The default position is immediately prior to the END symbol.

FUNCTION RESULT:

The user is presented with a form that corresponds to the Primitive to be
placed.

when the form has been completed, the Process is redrawn if the Primitive
is placed on screen and the user is in DRAW mode. The Primitive is
placed at the position indicated by the position parameter, if given, and
all following Primitives are moved down one position. If the position
parameter is omitted, the Primitive is placed immediately prior to the EMD
Primitive., If the Primitive was placed off-screen or the user is in
NODRAW mode, the Process is not redrawn, and the user does not see the
placement of the Primitive.

6-27

et T TN Nt e T T e e et L e T e e Te e T e e . LI SN S A S - " ... - -
S SR Y PN ISP A AP L A A IR RIS L.Jh P N R ."'.-1--}-'4-' ..".‘..‘ i’

PEI / REDRAW

6.2.13 PE] COMMAND: REDRAW

The REDRAW camnand is used to update the current Process display. This
camand is generally used when the user is in NODRAW mode.

COMMAND SYNTAX:
REDRAW
RED
FUNCTION RESULT:

This cammand causes the Process display to be redrawn fram the location at
which the display was last drawn. For example, if the last time the
Process displayed was updated at the top of the Process, the display will
again be drawn fram the top of the Process, The top will be displayed
even if the user has made changes to other areas of the Process off
screen, as long as those changes were not displayed. Other portions of
the Process can be displayed using the TOP, BOTTOM, UP and DOWN commands.
The REDRAW command is especially useful when the user is deleting

Primitives in NODRAW mode so the user can see what the Process really
looks like.

Lottt 2 s aaae g oo g

|

| S A S S G A et it Bl e Ao See e ghase 2aoe A mee e BoG B

~ e - -
- A S O T Ty eIy oy Y N T Y Y T Yy

PEI / TOP

6.2.14 PEI COMMAND: TOP

The TOP camand is used *to display the first six Primitives in the current
Process structure.

COMMAND SYNTAX:
TOP
T
FUNCTION RESULT:
The first six Primitives of the Process structure being edited (or the
entire Process if the structure consists of no more than six Primitives)

are drawn from the START symbol down. The START symbol is always the
first position of a Process structure.

6-29

. ."".;*4‘. CRRTR O ", . D
. e, - . TN
"L Can w.\f_h‘. -..{n." &"&“&1&"‘\:"\.“ PO -

E2hat S it Bhche 2m e 2 ar e WD TR ey "

W P W W W v —w-Iwy

PEI / UP

6.2,15 PEI COMMAND: UP

The UP cammand allows the user to "jump up" the current Process structure
an indicated number of positions.

CCMMAND SYNTAX:
UP [(number of positions]

U

where: - ﬁ

[number of positions] is an optional parameter indicating the number of
positions that the structure is to "jump up". If this parameter is not '
used, the default condition is to "jump up" the Process structure six]
Primitives, which is analogous to displaying the previous page.

FUNCTION RESULT:

The Process structure jumps up the number of positions indicated by the
optional parameter, if given. Otherwise the structure jumps up six
Primitives or to the top of the structure if less than six Primitives
precede the first position currently displayed.

6-30

......................

6.2.16 Terminating a PEl Session

Only one Process can be created or edited during a PEI session. To create
or edit other Processes or change to another level the user must terminate
the current PEI session and return to the DUI level. This is accomplished
by giving the END cammand described in section 6.2.7. The current working
database is left open and control is transferred to the DUI level.

6-31

6.3 ARCHITECTURE DESIGN EDITOR (ADE)

The ADE is used to define the layout and interconnection of the physical
aspect of a data processing network. It is not necessary to develop an
architecture model if the user wishes to model operations without regard
to where these operations take place. However, if Items are routed
through 2 system or if Processes at one location trigger Processes in
another, then an architecture model is necessary.

The ADE allows the user to create graphically a picture of the system
architecture by positioning symbols and connections. It also allows the
user to define the legal paths of cammunication between the connections
(and along the connections).

Even if a user has defined a Legal Path Table while creating an
architecture, the system offers the option of autamatically building a
Legal Path Table. The user is queried to resolve any ambiguities. The
Legal Path Table is used during the simulation to control the routing of
Items that are being passed through the system.

It is important to note that each node and link represented in the
architecture is intended to represent some system resource such as a CPU,
disk drive, tape drive, or channel., The system autamatically creates
model Resources for these system Resources. The parameters of such
Resources can be altered both in the ADE--though the DEFINE cammand (see
section 6.3.6)--and in the DUI—with the EDIT command (see section 6.1.4).

Hardcopies of a created architecture can be reproduced using a graphics
device (see appendix A.4).

6.3.1 Concepts for Using ADE

This section is intended to familiarize the user with the capabilities of
the ADE so that he may better understand the description of its use in
sections further below.

The view space is divided by vertical and horizontal grids. Grid lines
running vertically mark off the position and are numbered starting with
zero at the left side. Grids running horizontally mark off the Y position
and are identified with numbers, starting with zero at the bottam.
Another aid to building the architecture is variable symbol size. The
user can specify the size of symbols as he positions tham in the view
space. The user is provided with cammands to change his view screen
position, to position nodes which represent systam Resources, to delete
nodes, and to change symbol names and sizes. A command is provided which
allows the user to specify connections between nodes. These connections
(or links) are defined as system Resources. Any two nodes may be
connected by more than one link, but there may be only one legal path
between these two nodes. (Exception: When using Method A, B, or C
algorithms to define the Legal Path Table, two node types "TTY" and "LOD"
are considered "leaf-nodes" and should have only one connection to vne
other node. The architecture developed using the ADE becames the basis

a— .
LT ST S AL
PRI U PP WAL s

for generating the Legal Path Table which is used to route Items through a
system.

The view screen on the HP-2647A terminal, for example, is approximately
five inches high by eight and one-half inches wide. This workspace is too
small for some systems. The ADE, therefore, gives the user a workspace
which is thirteen and two-tenths inches high by 20 inches wide and allows
the user to move the viewspace anywhere in this workspace to construct the
architecture. The contrast between viewspace and workspace is illustrated

in figure 6-6. The workspace is the same size on all terminals supported
by AISIM.

Figure 6-6. Viewspace versus Workspace in ADE

6~33

" e L T T T T T
LT W, et W e, . P T R R L S AT S .

T T————"

.t . -
. ~ - B L S S S S Y
. I I A T A e S T A N TR S T e YAt te . DR S VAR AN S P R e PO LR
A Wi WY J..‘--..—‘._‘-A.-_‘.AW“.J‘A a " . g .4 0 g "‘AL-’A)_-“_‘-.-! 2 ol ol el o la

T P ——

6,3.2 Use of the ADE

The ADE can only be accessed fram the DUI level. The ADE level is entered
by issuing the following cammand:

ARCH

A

Only one architecture is allowed per design database. This prevents the
user fram specifying an architecture structure that does not relate to the
Processes and Resources that have been defined. Experiments using common
Processes, Resources, etc. with different architectures can be run by
following the procedure listed below:

1) while in the VAX/VMS ready level or AISIM READY level, COPY the
project.DBF data file to newproject.DBF data file where: project
and newproject are names of PROJECT databases for AISIM models.

2) Enter the ADE to edit the architecture contained in
newproject ,DBF,

3) Simulations can now be run using the newproject database.

If there is no architecture defined in the design database, the system
will provide a blank grid on the screen and a pound sign (#) prompt for
the user to enter cammands. If an architecture has already been defined,
then the old architecture will be displayed and the user will be provided
a pourd sign (#) prompt for entering cammands.

The ADE has DRAW and NODRAW modes which are similar to the PEI DRAW and
NODRAW modes. However, if a user is logged on to a VT100 terminal, only
NODRAW is available. In NODRAW mode, the user can place and change
symbols, connect nodes, and perform all of the functions of the ADE,
except that the results of the cammands will not be reflected in the
screen until the user explicitly redraws the screen with a REDRAW or
WINDOW command. If the user is in DRAW mode on a supported terminal, the
results of all ADE camands will be reflected in the display. The VT100

is always in NODRAW mode. The default for the other terminals is DRAW
mode.

The following pages give a summary of commands available in the ADE and
their use. These cammards are legal in the ADE level only.

6-34

Nl W g P T T W IwrewTw TN N W W W W e WY W W T Y g v T

CHANGE NAME, {name}, {new-name}
TYPE, {name}, { type}
SIZE, {name}, {size}

CHG

CONNECT {nodel},{ncde2},{link}.[F]
CON

DEFINE {symbol-~type}, [Resource-name]
PATH, {nodel}, {node2}, {Linkl}, ..., {Linkn}

DEF

DELETE {namel},...,[name-n]

DEL *

DRAW

DR

END

LIST PATH, {nodel}, {node2}
LPT

L

MOVE {node},{x-position},{y-position}

M

NODRAW

N

PLACE {symbol-type},{node}, {x-position},{y-position},[size]
P

RBCON {link}
R

REDRAW
RED

SAVE

WINDOW {directionl}, (n], [direction2], [n]
W

Figure 6~7. ADE Command Summary

6-35
b - - - . - - .. - - - - C . 0 - - . . . ta - . - “e
o e et e - CIP LI R R R .- P) - . A RN - =, et o', . o . - S N - . - - - -
P N T T o T A I team St L L T AN N e - A DA N
? e’ alta et sl sl shatatalatat ol e PE PR WL WL WP W W e PPN P W PR S LA P I AR - o RS YT Y A ShIPIPR T T Tivt

ADE SYMBOLS

6.3.3 ADE Symbols

Symbols used to construct an architecture are generic in nature. The
shape associated with same symbols is representative of a camputer
system's nardware elaments although no implicit attributes of computer
hardware elements are given to the symbols. Attributes defined for a
symbol which make it represent an actual physical device must be defined
by the user. Attributes are attached to symbols by the DEFINE command.

Symbols in an architecture correspond directly with Resources. This
relationship applies to nodes and links. All symbols which are directly
connected correspond to an entry in the Legal Path Table.

One other implied relationship applies to the symbols in an architecture.
The symbols TTY and LOD are considered to be "terminal” symbols by the
Legal Path Table. Therefore, these two symbols have a constraint that
they can be connected with only one link to one of the other symbol types.
Also, TTY and LOD symbols cannot be directly connected. These constraints
are enforced by the LPT generation not the ADE.

The complete symbol set for AISIM architecture is shown in figure 6-8,

“ME = £T EN 2

R) SEPYSIRIF S S S S ;

; ' ha t: | ' H

\\’ X : - \

is !

A '

— —_— s\ ﬁ::1 .

. i ! SN !
g RF e Dt G} e P

’

[_JL___.'L.____J \\ U !

-
»
v
v
w
-
wi
v
L
L4
4
F)
™
<«
o
-
wm ot

; Figure 6-8. Architecture Symbols

p 6-36

PSP R AP Ui) L AP

T

N R SR e o e

Lan au i anan g

R Al Sl SR ML e g s s sl i e o g

ADE / CHANGE

6.3.4 ADE COMMAND: CHANGE

The CHANGE command allows the user to modify the name, type, or size of an
ADE symbol which represents an architecture node.

COMMAND SYNTAX:
CHANGE NAME, {name}, {new-name]}
CHANGE TYPE, {name}, {type} .
CHANGE SIZE, {name}, {size}
CHG
where:
{name} is a required parameter indicating the name of the symbol which is
to be changed. For the cammands CHANGE TYPE and CHANGE SIZE, name must

designate a node.

{new-name} is a required parameter specifying a new name for the current
named symbol where new name should be 1-8 alphanumeric characters.

{type} is a parameter specifying that the named symbol is to be changed
from its current type to "type" which is one of the legal symbol types.
The symbol types are shown in figure 6-8,

{size} is a required parameter specifying that the named symbol is to be
changed from its current size to "size" where size can be 1-20.

FUNCTION RESULT:

The indicated changes are made to the symbol "name". When the user
changes a symbol type or size, there is no impact on the other parameters.
When the name is changed, the default size is the number of characters in
the name. If the user is in DRAW mode, the symbol is redrawn to reflect
the changes.

6-37

e % VT

TN YTV Y,

ADE / CONNECT

6.3.5 ADE COMMAND: CONNECT

The CONNECT command is used to show connections between architecture nodes
by placing links between them.

COMMAND SYNTAX:
CONNECT {nodel}, {node2},{link}.(F]
coN

where: -

{nodel} is a required parameter indicating the first symbol of a from-to
pair of symbols to be connected and where nodel is 1 to 8 alphanumeric
characters. '

{node2} is a required parameter indicating the second symbol of a from-to
pair of symbols which are to be connected and where node2 is 1 to 8
alphanumeric characters.

{link} is a required parameter indicating the name of the connection which
is to be made and where link is 1 to 8 alphanumeric characters.

[.F] is an optional parameter appended directly to link indicating that
the cammunication link between nodes nodel and node2 is full-duplex. The
name of the link must be no longer than eight characters including the
".F" The effect of this is to create two links, a "link.A" ard a
"link.B". Links defined without this parameter bear a half-duplex
default.

FUNCTION RESULT:

If nodel is not in the viewspace when the command is issued, the usér will
be prompted with the message,

THE FROM NODE MUST BE ON THE SCREEN TO ESTABLISH CONNECT: COMMAND ABORTED:

If nodel is on the viewspace and the user is on a termminal other than a

VT100, a cursor (+) is turned on. If the user is on an HP terminal, the

cursor appears at nodel. If the user is on a TEK4105 terminal, the cursor

appears where it was last positioned, or at the lower left corner if it .
was never moved. At this point, the user has two alternatives:

1) he may cause the system to connect the two symbols with a
straight line through their centers by depressing any non-period,
alphanumeric character or,

2) he may cause the system to produce a shaped line segment from
symbol 1 to symbol 2 by:

6-38

YW W wIMR Y.".T e #

MO 2 e s 0 0n

CRIACA S e el Rk Sl ST B B e & AW gul aon ge

a) moving the cursor using the graphics controls, to a position
where he wishes to bend the line,

b) typing a peried (.),

¢c) repeating a) and b} until a maximum of five corners have been
created.

d) completing the line segment from the last corner to symbol 2
by entering a non-period alphanumeric character.

Alternative 2 allows the user to place symbols randamly and later show
connections that would be obscured or confusing if generated by
Alternative 1. Connections can be straightened or have corners added to
them with the RBCON cammand (see section 6.3.14).

If the user is on a VT100 terminal, the two nodes are automatically
connected by a straight line. Bent line connections are not possible.

If the user is in NODRAW mode on a terminal other than a Vvrioo0, the
connect command operates as stated above for DRAW mode except that the
line or line segments are not reflected on the screen. Thus the user can
still make connections while in NODRAW mode.

After a connection is defined, two entries are entered in the Legal Path
Table. The first is an entry for the path fram nodel to node2 via link,
and the second entry specifies a path fram node2 to nodel via link. If
link is defined as full-duplex, then the path fram nodel to node2 uses
"link.A", while the path from node2 to nodel uses "link.B". (See section
on "Define" camand). Nodel is then established as the link's fram node
and node2 is established as the link's to node. All subsequent paths
using this full-duplex link will use "link.A" if they go in the direction
of the from node to the to node and will will use "link.B" if they go in
the opposite direction.

- T T T LaBRCE ™

W T Y W T W W W W T e v o v - -4

ADE / DEFINE

6.3.6 ADE COMMAND: DEFINE

The DEFINE cammand serves two functions. It is used to define attributes

to be associated with symbols (this allows the user to make the logical

assigmment of physical device characteristics to the Resource). DEFINE is

also used to indicate the legal path between nodes in the architecture.

COMMAND SYNTAX: -
DEFINE {symbol-type}, [Resource-name]
DEFINE PATH, {nodel}, {node2},{linkl},...,{linkn} -

DEF PATH

2 where:

{symbol-type} is the symbol type (sqr,dia,lod,tty,etc.) for which the user
wishes to define attributes. Figure 6-8 shows these symbols.

{Resource-name] is an optional parameter that specifies the name of an
existing Resource fram which the symbol-type attributes are to be copied.

{nodel} is the name of the node from which the path is to run.
{node2} is the name of the node to which the path is to run.

{linkl},..., {linkn} are the names of the links along which the legal path
between nodel and node2 is to run.

FUNCTION RESULT:
If the DEFINE cammand is' issued with the format
DEFINE {symbol-type}

a form will be displayed that shows the parameters currently assigned to

this symbol type. The form has the same format as the Resource form in -
figure 3-6, The user may modify these parameters as desired. After

symbol attributes have been defined, any further Resources autamatically

created in association with the symbol will be given the attributes that
were defined for that symbol type.

If the syntax of the command is:
DEFINE {symbol-type}, [Resource-name])

the system will present the user with a form to be filled with the
attributes of the named Resource. The user can check the data and/or
modify it. When entered, the data last displayed in the form will be used
to create the attributes of the symbol type.

6-40

“ ot LI T T S N S A R
- S L TR A . - ATt Ve TR AT T Y T e e
B T A e o I IO R AR N M PR ML I TR L - A At At At e, e DR SRR
PPN PPN O P W TR WAL WS oV, WA R AL AP '-‘\J_J\J'A'_P".!} WO N

If the syntax of the command is,
DEFINE PATH {nodel}, {node2},{linkl},...,{linkn}
DEF P

entries in the Legal Path Table will be made. These entries can be
inspected with the LIST cammand (see section 6.3.10).

There are several rules constraining the creation of a legal path in ADE,

First, a point-to-point path is a path between two nodes that are
separated from one another by a single link, i.e., there is no other
node between thenm,

Secondly, a sub-path of a given path is any one of the segments of
the path that go to the same node as the path but fram any one of the
nodes the original path passes through. For example, a defined
legal path fram nodel to node2 to node3 to node4 will have the
following sub-paths: (1) from node2 through node3 to noded4 and (2)
the point-to-point path fram node3 to node4. The path fram nodel to
node3 through node2 is not a sub~path of the original path because it
does not go to the same node as the original.

With these two definitions, we can state four quite general rules
governing the definition and deletion of legal paths. They are:

1) A Legal Path between two nodes is a collection of Legal Path
Table entries of the fomm:

FROM TO NEXT LINK

which indicates that the path fram node FROM to node TO goes to node NEXT
via link LINK,

2) There may be only one Legal Path between any two nodes.

3) There must be a path between any two nodes that are directly
connected.

4) Use of the two links implied by a full-duplex name for a
connection follows these rules:

a) When a connection Con.F is established (actually Con.A and
Con.B) with the cammand,

CONNECT NODE1,NODE2,CON.F

Nodel is established as the fram node for that connection and
Node2 is established as the to node.

b) Any path which uses the connection CON.F in the direction
fram its fram node to its to node will use CON.A.

6-41

SRS TE TR TR TN TR e TR

TRwTTETeTeTy

ik A Nad S AN S A*8 st Sl are e i aue oaen

¢) Any path which uses the link CON.F in the direction
from its to node to its fram node will use CON.B

d) Establishing the connection between two nodes implicitly
defines a point-to-point path between them.

These four rules have a number of restrictions of which the user should be

aware:

1)

2)

3)

4)

5)

6)

7

.....

Defining a path from one node to another implies defining paths
fram all nodes along the path to the last node in the path.

Changing a path (redefining, deleting) changes any other paths
that use it as a sub-path.

A point-to-point path cannot be deleted.

When a path between two directly connected Nodes is deleted, a
point-to-point path is automatically restored.

Deleting a node or link fram an architecture removes any paths
which use the deleted entity.

Changing the name of a node or link changes the name of the
entities in the Legal Path Table as well.

Cyclic paths are not allowed.

6-42

...........
....................
......................

.........
.....
SN T et

ADE ,/ DELETE

6.3.7 ADE COMMAND: DELETE

The DELETE cammand allows the user to delete nodes or links in the
architecture or parts (or all) of the previously defined Legal Path Table
LPT).
COMMAND SYNTAX:
DELETE {namel},..., (name-n]
PATH {nodel},{node2}

*

DEL

where:

{namel} is a required parameter that specifies the node or link to be
deleted.

{name-n} is an optional parameter which specifies an additional node or
link to be deleted.

{nodel} and {node2} are required parameters indicating the nodes between
which the legal path is to be deleted.

* indicates the entire architecture is to be deleted.
FUNCTION RESULT:

If the user is in DRAW mode, the following results are seen. When a
symbol is being deleted, the symbol and all connections to it are erased
from the screen and removed fram the database. If a connection is being
deleted, the connection is erased fram the screen and is removed fram the
database.

I1f the user is NODRAW mode, the affected entries are deleted from the
database and the screen remains unchanged. When a path between nodel and
node2 is deleted from the Legal Path Table, only that path is deleted; any
sub-paths which are in this path are unaffected.

6~43

ADE / DRAW

6.3.8 ADE COMMAND: DRAW

The DRAW camnand is used to put the user in the ADE DRAW mode.

COMMAND SYNTAX: b

DRAW
DR
FUNCTION RESULT:

The DRAW cammand sets the ADE mode to DRAW mode. This mode will remain in
effect for all future ADE sessions during the current DUI session until
changed by a NODRAW cammand. The DRAW cammand is not available on a VT100
terminal.

In DRAW mode, all changes made by a user to the architecture which affect
the architecture display are immediately reflected in the display., I.e.,
all nodes and comnections are drawn on the screen as they are added to the
architecture, and deleted nodes and connections are erased fram the
architecture.

6-44

...................... ... -~
-------------- UROACANE . ORI SR, L.

Lt e - . N T e e T et e e
- PR RO P A AP

e ", - "
AR P T PP, P AN

,,,,,
.....

F AT AR AT ST N

1'11

ADE / END

6.3.9 ADE COMMAND: END

The END command is used to terminate the ADE session.
COMMAND SYNTAX: ’ .
END

FUNCTION RESULT:

The END command terminates the edit mode of the ADE session and
autamatically triggers the generation of a Legal Path Table (LPT). The
user will be questioned as to the method of generation for the LPT and for
information necessary to clear up ambiguities in its generation before

control is returned to the DUI level. The LPT is described in section
6.3.18.

If the user does not wish to generate an LPT, another END coammand will
return control to the DUI level.

6-45

. . P Cam -
e, LA A L w, a

o a

R LY LT T T T TR T

TweT

.

- o™ . » - .t e
TN T T T s RS NS NN
T A e AT ST S A e A

i e o —T T

ADE / LIST

6.3.10 ADE COMMAND: LIST

The LIST cammand enables the user to list the legal paths that have -been
defined in the architecture. »

COMMAND SYNTAX:
LIST PATH, (nodel}, {node2}
LPT
where: -
{nodel} is the name of the node at which the path to be listed begins.
{node2} is the name of the node at which the path is to end.
FUNCTIONAL RESULT:

If the camand syntax is LiST PATH, a format like that below is displayed:

FROM: node3 TO: node2 PATH:
linkl,1link2,...,1linkn

If the camand syntax is LIST LPT, the entire Legal Path Table is
displayed.

etk e B

6-46

)
R N |

e o NEAACANSA S Rt A E it e et Bre S AN e Jra A g S A R R R

ADE / MOVE

€.3.11 ADE COMMAND: MOVE

The MOVE cammand allows the user to change the location of a node in the
architecture.

COMMAND SYNTAX:
MOVE {node},{x-position},{y-position}

M .

H where:
{node} is the name of the node to be moved.

{x-position} is the x-coordinate of the new position, i.e., the position
to which the node is to be moved.

{y-position} is the y-coordinate of the new position, i.e., the position
to which it is to be moved.

FUNCTION RESULT:

If the user is in DRAW mode, the node and all links to or from it will
first disappear fram the screen. The node will then be redrawn at the new
position and the previously defined connections with other nodes will
reappear.

If the user is in NODRAW mode, the coordinates of the node will be changed
in the database, and the screen will remain unchanged.

6-47

CEJE St A e) e TNt e Mt e et
Pyl S O SIS T WL T, Yol Wl Wit 1 0 B AU Y

ST T TN 2
VDRSO ST, I AL P, W, P W

ADE / NODRAW

6.3.12 ADE COMMAND: NODRAW

The NODRAW cammand is used to put the user in the ADE NODRAW mode.
COMMAND SYNTAX:

NODRAW

N
FUNCTION RESULT:

The NODRAW cammand sets the ADE mode to NODRAW mode. This mode will
remain in effect for all future ADE sessions during the current DUI
session until changed by a DRAW command (section 6.3.8).

In NODRAW mode, no changes which are made to the architecture are
reflected in the display until the display is explicitly redrawn by the
user. For example, when nodes are placed in the architecture or deleted
from the architecture, the changes are made to the catabase, but the
screen remains unchanged. Cammands which can be used to update the
display are REDRAW (section 6.3.15) and WINDOW (section 6.3.17) commands.

All ADE commands are available while in NODRAW mode, except that on a
VT100 terminal, connections can only be straight lines - bent line
connections are not allowed. Connections on the VT100 are drawn
automatically when the CONNECT (section 6.3.5) and RECON (section 6.3.14)
commands are issued.

b A e

ADE / PLACE
6.3.13 ADE COMMAND: PLACE

- The PLACE cammand allows the user to position a legal ADE symbol in the
view space at specified coordinates.

COMMAND SYNTAX:

PLACE {type},{node},{x-position},{y-position}, [size]
P

where:

{type} is a required parameter which specifies one of the legal ADE symbol
types. The legal symbol types are shown in figure 6-8.

{node} is a required parameter that indicates the name that is to be
displayed anmd associated with this placement of a symbol and where name is
1 to 8 alphanumeric characters.

{x-position} is a required parameter that specifies the horizontal
position of the symbol relative to vertical grid number position 0. The
x-position must be within the limits of the view screen.

{y-position} is a required parameter that specifies the vertical position
of the symbol relative to horizontal grid position 0. The y-position must
be within the limits of the view screen.

[size] is an optional parameter specifying the size of the symbol to be
placed. The default size is the number of characters in name. Legal
sizes are 1-20.

FUNCTION RESULT:

If the user is in DRAW mode, a symbol of the specified type appears on the
view screen at the x, y positions indicated in the camand. The symbol
name appears within the symbol and the symbol size is regulated by the
size parameter.

If the user is in NODRAW mode, the symbol is added to the database, and
the screen ramains unchanged.

6~49

vy

B % Bl S leg a4 oa Bren- s an s gt <As &g v

ADE / RBCON

6.3.14 ADE COMMAND: RECON

The RECON cammand allows the user to alter the shape of a given link,
giving it corners, decreasing the number of corners it has, or adding to
the number of corners it has.

COMMAND SYNTAX:

RECON ({link}
R

where:
{link} is the name of the link to be redrawn.
FUNCTION RESULT:

If the user is in DRAW mode, the link will disappear, but the cursor (+)
will be turned on. The cursor is positioned at the fram node on an HP
terminal, or at its last location on a TEK410S terminal (see CONNECT
command). As with the CONNECT cammand (section 6.3.5), the user has two
alternatives:

1) cause the system to connect the two symbols with a straight line
through their centers by typing any non-period alphanumeric
character

2) cause the system to produce a shaped line segment from symbol 1
to symbol 2 by:

a) moving the cursor using the graphics controls, to a position
where he wishes to berd the line,

b) typing a period (.),

c) repeating (a) and (b) until a maximum of five corners have
been created.

d) completing the line segment from the last corner to symbol 2
by entering any non-period alphanumeric character.

If the user is on a VT100 terminal, a straight line connection is
automatically created between the two nodes and stored in the database,
but the screen reamains unchanged.

If the user is in NODRAW mode on another terminal, the two options given
above are still available., The only difference is that the connection
lines are not displayed on the screen as the connection is defined.

6-50

Ty

T Tt e T T WU T R wergrww e e
Ll A S it e w vy e vy
. - L e I T N R T Y Y T e Y Y T Ty T T YT TN XV ~— — 1
- - - - -« . R Pl . N B

ADE / REDRAW

6.3.15 ADE COMMAND: REDRAW

The REDRAW command causes the current architecture window to be redrawn to
reflect any changes which have been made in NODRAW mode.

COMMAND SYNTAX:
REDRAW
RED

FUNCTION RESULT:

The display is redrawn to reflect the current architecture including all
changes made by the user while in NODRAW mode.

6-51

————————

A IR r—— T

T N N W U W T W W T .-.,

ADE / SAVE

6.3.16 ADE COMMAND: SAVE

The SAVE command copies the contents of the working database into the
user's permanent database.

COMMAND SYNTAX:
SAVE
FUNCTION RESULT:

The permanent database is replaced with the contents of the working
database, and the user is returned to the ADE ready state - # prampt.
This cammand is useful when the user is defining a large system because it
allows the user to protect the work done up to the point of issuing the
SAVE cammand.

6-52 i

ADE / WINDCOW

6.3.17 ADE COMMAND: WINDCOW

The WINDOW cammand allows *he user to move the view screen to any position
within the legal view space.

COMMAND SYNTAX:
WINDOW {directionl},(n], [(direction2], [n]
W

where:

{directionl} is a required parameter that specifies the direction to move
the view screen. Legal directions are:

up
down
left
right

oo c
non ua

[direction 2) is an optional parameter that specifies the direction to
move the view screen. Legal directions are:

up
down

left
right

v oac
wuw un

[n] is an optional parameter that specifies how many grid positions the
view screen is to be moved from its present position. If "n" is not
given, a default of half the screen width or height is assumed.

FUNCTION RESULT:

After the camand has been issued, the screen is cleared, new coordinates
are calculated, and the screen is redrawn as seen fram the new position.
View screen coordinates do not change; only view space coordinates. If
the value of "n" is too large causing the view screen to go beyond the
limits of the view space, the value of "n" will be truncated to prevent
the system fram exceeding the view space bounds.

When the ADE is first entered, the view screen is positioned at the upper
left corner of the view space,

6-53

L3

Laadis

vy

6.3.18 Termination of an ADE Session

The ADE session is terminated by issuing the cammand,

END

This campletes the edit portion of the ADE session and begins a sequence
of events that leads to a return to the DUI Level. Before control is
returned to the DUI level, however, the system gives the user the option
of creating a new Legal Path Table. The Legal Path Table (LPT) created by
the system is based upon the architecture that was created. The LPT
consists of a two dimensional array. Entries in the array represent a
means of getting from one node to another.

Entries contain two pieces of information:

1) the next node in the path from Node 1 to Node 2
2) the link used to get to the next node.

There are three basic methods of generating a Legal Path Table at the end
of an ADE session. In response to the END cammand, the system questions
the user:

BY WHICH METHOD DO YOU WISH TO GENERATE THE LPT (A, B, OR C)?

IF YOU HAVE AN ESTABLISHED LPT OR IF YOU WISH TO SKIP THIS STEP,
TYPE "END”

IF YOU DESIRE MORE INFORMATION ON METHODS A, B, OR C, TYPE "INFO"

After the pound sign (#) prampt, the user may enter either "a", "B", "C",
"END", "HELP", or "INFO". If the user enters END and a carriage return
after this or any subsequent # prampts without responding to the previous
prompt question, any currently defined LPT, including none, will remain in
effect, and control will return to the DUI level.

If any of the three options is chosen the, previously defined LPT will be

deleted fram the database and a new LPT will be produced. Since these

algorithms may take several minutes, the user is provided with a message

that lets him know the system is progressing with the LPT. The prampt .
initially reads "Generating LPT 1". After so many routes have been found,

the message will change to "Generating LPT 2" and so on. The following

paragraphs discuss the individual processing performed in response to

methads A, B, and C.

METHOD A - Method A directly connects adjacent nodes in the architecture
but no other paths are generated. This method is used when message
routing paths are not of interest in the model. This method requires the
least processing time to generate the LPT. After the user selects method
A, the system will begin generation of the LPT. In general, AISIM will
not solicit any further information if this method is used.

6-54

Ry

Pl RN et Bage Ty TTIITe——— R
. L e B AR

Method A detects two types of error. If the generator detects an
unconnected node, the system will output the following error message:

UNREACHABLE NODE...'"node name"

and control is.transferred to the DUI level. If multiple links connect
nodes, the system will prampt the user for resolution of ambiguous paths.
The system will prompt with:

(OING FROM "Node namel" TO "Node name2" CAN GO

1. Through "next Node name" BY CHANMEL "channel name"
2. Through "next Node name" BY CHANNEL "channel name"
ENTER THE NUMBER OF THE ROUTE YOU WANT TO USE #

All "Through" options will be listed. The choice of path is selected by
entering the number of the path after the pound sign (#) prompt. If there
are ambiguous paths for other node pairs, the user will be prompted for
resolution. If the user should ABORT the LPT generation the following
prampt will be displayed:

UNABLE TO SAVE LPT

Control is then passed to the DUI level. If all ambiguities are
clarified, the systam will camplete the generation of the LPT, and issue
the following message:

SAVE OF LPT COMPLETE
The user is then at the DUI level.

METHOD B - Method B s'.ould be used when there is extensive routing through
the architecture. Using Method B, AISIM will algorithmically find all
possible legal paths through the system.

This can involve a lot of processing in fully connected architectures
because a path from every node to every other node must be defined. For
exanple, if there are 20 nodes then there will be 380 paths, 20 times 19.

The AISIM responses for method B are similar to those described in method
A. Because AISIM will fully connect all nodes in the architecture there
are bound to be many ambiguous paths. The user will be prompted to
resolve all ambiguous paths.

METHOD C - Method C should be used when there is extensive routing through
the architecture, also. Using Method C, AISIM will algorithmically find
all possible legal paths through the system but will assume that the path
for directly connected nodes in the architecture is the direct link. This
can substantially decrease the number of paths the user must resolve.

The AISIM responses for method C are similar to those described in method
A,

The HELP request causes the system to show the available commands.

The INFO request prints the following:

ML 'HOD A defines as legal paths only connections directly between adjacent
Nodes. Longer paths must be handled explicitly in the user Processes.

METHOD B generates all possible paths between each Node pair. You must
identify default legal paths for each Node pair.

METHOD C generates all possible paths between each Node except for
directly connected Nodes. In the case of adjacent Nodes, the direct -
connection is assuned as the legal path,

Type END and a carriage return to exit the LPT generation.

In figure 6-9, an AISIM architecture is shown. This architecture connects
nine nodes together with 10 links. Using method A, the user is required
to resolve 2 ambiguities. Using method B, the user is required to
resolve 20 ambiguities. Using method C, the user is required to resolve
12 ambiquities. The Legal Path Tables using each of these methods is
shown in figures 6-10 through 6-12.

6-56

...........
.......

Tm e~ LA TR TETYTTE T N T T T T — gy S aw
{ ST ST AT R . R A P P AR N A Sl Ak tafl et Al S S b "'".":".".".“.'\"."‘:‘1
H0ME = LEFT 1, P)
“ﬁ
:
!
Pry o

£ br
[2]
}J
=}

\
/

” .
] 7 N
o
- - .
i % = : 3 ‘%
:d H
3 7 .

Figure 6-9. Sample Architecture

FROM T0 NEXT VIA
NODE LINK

r4
o
Q
m
r4
Q
(=
m

(2]
(3
[

=HIOOOOTMMMMOOUONNNHD»
OO0ORIMMOOOONMMA0E»N
[a)
wn

Figure 6-10. Sample LPT Generated by Method A

6-57
et T TN e T ATt L. et
PR R S G R S S L
e e T e T T L,
PRSI PR P a0 Ag‘-_“ P TN A I

SR0M
NQODE
ZBXVTTES
A

A

A

A

A

A

A

A

8
8

8

8
8

8
8
B
C

C
C
o

<

C
«
C
0
0
0
)
0
0
b
0
E
€
€
€
E
E
13
E
£
E
£
F
(3
F
[
E
G
G
G
G
G
G
G
G
H
(]
H
H

M
H
H
H
I
¢
1
I
I
I

I

I

Figure 6-11.

- NEXT
NCOE ~“00€
szzzz=s= SSEIRIIS

<
v
E
£
G
]
z
A
C
0
€
£
G
H
A
8
o)
£
E
G
M
I
A
8
C
E
3
G
H
I
A
8
C
0
3
G
H
I
A
8
C
o]
E
G
H
1
A
8
C
D
E
F
H
I
A
8
C
0
E
£
G
I
A
8
C
0
3
F
G
]

A

¢
C
<
C
C
C
C
C
o
C
C
[
C
A
8
D
o]
D
D
o)
0
C
[«
C
£
I3
£
E
E
V]
D
D
0
G
G
G
G
o}
0
0
o]
G
G
G
G
£
€
g
E
3
3
H
I
G
G
G
G
G
G
G
G
G
G
G
G
G
G
[}
G

Sample LPT Generated by Method B

6-58

SN RS A AL A A e Jhtun i A ey el S At A) - - ¥ ~ - 0 - - DA YNl "Bt “ Sk SO Rl IS A i I il 2t Ao Shah St dhass diagt
- oL Tt T . N B - . - . - . B, DA R S Rl - ~

i T I I IIIIIOOOOOOOOMTIMIAMNMMANMMMMMMMMMOO0O000000NNONNNNNANDTOODDODIF>P>rdr»

xonmonm>unﬂmonm>mxnmonm>nIomon@»mznﬂOn@)mIoﬂmnmbHIoﬂmombmxonmon>Hzonmonm
OOO0OO0OOEOOOOROOORITIMMMMMOOONV0VIOOOODTUVOMMMMMANONDOVOOTTWEP NN ACNDOOOEY OO
(2]
«

C1e

Figure 6~12, Sample LPT Generated by Method C

SECTION 7

ANALYSIS USER INTERFACE (AUI)

After campleting a model design using the DUI, the model can be exercised
using the commands available in the AUI. During simulation, statistics
are kept on Variable valuves, Item throughput, Resource utilization,
queuveing delays, Queue lengths, Action times, Process execution, and
Process timing. A set of output reports organizes these statistics for
printing off line or viewing on-line (while in the AISIM READY level)
after campletion of the simulation run. Plots of selected model
parameters, however, may be drawn on the screen when simulation is halted
at a breakpoint, end of period, or end of simutation.

The cammand issued to enter the AUI fram the AISIM READY level contains an
optional parameter NOXLATE. If this parameter is amitted, the project
database is first translated before a simulation is performed. This
translation converts the database into the format required for simulation
execution.

If the NOXLATE parameter is used, no translation will take place. The
last translation of the project database is used in executing a simulation
run. Since another translation is required only if the database was
changed (in the DUI) since the last translation, it is not always
necessary to repeat the translation process at the start of an analysis
session. The NOXLATE option permits skipping of the translation step.

In the translating process, the user is asked the following question, if
there is more than one Scenario in the project database:

WHICH SCENARIO DO YOU WISH TO TRANSLATE?
The user must respond with a valid Scenario name, one that has been
defined previously in DUI level. A carriage return in response to this
question will cause AISIM to list available Scenarios.
If the Scenario name given is invalid the system will respond:

INVALID SCENARIO NAME - REENTER
The user should then enter the correct Scenario name.
When translation of the model and Scenario has campleted, the simulator
reads the translated database and checks for errors. If the simulator

detects one or more errors, the message

ERRORS DETECTED IN MODEL TRANSLATION

7-1

Al s & e e s e e s g

is displayed, the AUI level is exited and the user is returned to the
AISIM READY level.

At this point the user should enter the EDIT command (described in section
7.4). This autamatically invokes the EDT line editor on the project
report file. The user should use the Find command of the VAX/VMS EDT
editor to list all occurrences of "##4#". This will result in a list of
all errors detected during initialization. Each error documents a problem
detected in the model. The EDT line cammands used to view the report file
are discussed in section 1ll.3.

If no errors are detected, the following message is displayed:

NO ERRORS DETHCTED IN MODEL TRANSLATION .
YOU MAY NOW ENTER COMMANDS

The system provides a # prompt and is ready to accept any of the valid AUI
comands. These commands are described in the following pages.

During each of the three phases of analysis - 1) pre-simulation (before
the first GO comarnd is issued), 2) mid-simulation (after the first GO
command is issued but before simulation termination), and 3)
post-simulation (after simulation termination), the user can invoke
different commands.
PRE-SIMULATION COMMANDS:

CANBREAK DEFPLOT EDIT END GET GO

INFRES LIST LISTVAL

SAVE (plot definitions) SETBREAK DELETE

MID-SIMULATION COMMANDS:
CANBREAK EDIT END GO LIST LISTVAL
PLOT SAVE SETBREAK

POST~SIMULATION COMMANDS:
END LIST LISTVAL PLOT SAVE

The simulation is started with the GO command.

The SETBREAK and CANBREAK cammands are used to establish and cancel
stopping conditions (or breakpoints) for the simulation. EDIT is used to
make temporary chamges to Constants, Variables, and the randam number seed
values (the keyword is STREAM) upon which stochastic timing and
probabilistic branching are based. The Scenario and Loads may be modified
by changing the values of parameters specified by Constants. A limited
number of Resources in the model sametimes causes a bottleneck which is

........

- DI R A i P “e
W U S0 S WA VLI PNy S WP Y L. g

evidenced by a waiting line or queue. The effects of this queueing may be
eliminated by changing the available Resources to an unlimited quantity.
The INFRES comnand is used to do this on a temporary basis. LIST and
LISTVAL are used to display model entities, their attributes, and their
values., LISTVAL also allows the user to examine the current random number
seeds. The END command returns control to the AISIM READY level.

The DEFPLOT and PLOT cammands are used to specify what information is to
be gathered for graphs and to request the graph to be displayed at the
termminal, respectively. The DEFPLOT cammand can only be used prior to the

start of simulation since the simulator must know what statistics to
sample.

Simulation may be performed in periods and is suspended at the end of the
nunber of periods specified. The number of periods to be simulated is
specified as an optional period of the GO cammand. The user is prompted
at the emd of the period with the message:

END OF PERIOD
YOU MAY NCW ENTER COMMANDS

and with an audible 'beep’ at the terminal.

The user can now make changes in the values of Variables, set breakpoints,
display plots, or cancel breakpoints. By .suspending the simulation at the
end of a pericd, the user can dynamically interface with the model.

A similar result occurs at a user specified breakpoint, except that the
message reads:

BREAK POINT REACHED:
(description of the condition of the breakpoint)
YOU MAY NOW ENTER COMMANDS

An audible 'beep' is also sounded at this point.

The AUI level cammands are described in detail on the following pages.

7-3

i . , I .
AT TN) | -
(e e
VAL BLE]

DEF INED
BREAKPTS

»

ARE

)
.

USED TO DE- |

FINE PLOTS
ENTITY

>

TO CHANGE
[SOME ENT1TY

VALLES |

STARTS SIN- # i
ULATION RN

DISPLAYS
—&LP J——-wmo
INFORPATION
4
SIH ASSUMES
INFRES INFINITE =
4 /'y
LIST ENTI-
LIST (L) TIES OF SPEC—
FIED TYPE |
4
DISPLAY
VALUE OF AN —1

@ 10 ST)
SETOREAK SEAPT IN |—
SN THE SIN RUN
4
WITES PLOT
SavE FS N0
DATA TO 08

Figure 7-1. Analysis User Interface Commands

T Y

-_-‘._'
0 .,

CANBREAK
CAN

DEFPLOT {entity~type},{entity-name},...,[entity~-name]
DEF .

DELETE TITLE, {titlenuml}..., (titlenumn]
DELETE TITLE,*
DEL

EDIT {entity-type},{entity-name}, {new-value}
E

END
GET DEF, {setname}

GO [n]
G

HELP

INFRES {entity-name},...,[entity-name]
*

LIST {entity-type/DEF/PLOT/TITLE}
L

LISTVAL {entity-typel,{entity-name}
v

PLOT
SAVE {settypel}, {setname},[descr]

SETBREAK {entity-type},{entity-name},{rel-oper},{value}
SET

Figure 7-2. AUI Command Summary

(A s ~anl a2l T

4

AUI / CANBREAK
7.1 AUI COMMAND: CANBREAK

: The CANBREAK camnand allows the user to cancel a previously defined
X breakpoint. See the SETBREAK cammarnd in section 7.14,

COMMAND SYNTAX:
CANBREAK
CAN

FUNCTION RESULTS:

A previously defined breakpoint is canceled.

P RSN
CPC PO R N Y

rv—.'-'ww‘ T

N N R N N N T N T T T s v =

AUI / DEFPLOT
7.2 AUI COMMAND: DEFPLOT

DEFPLOT is a pre-simulation command that allows the user to specify what
plot data to collect over the period of simulation. The specified plot is
added to the present set of plot specifications. This plot data is later
graphed with the use of the PLOT command.

COMMAND SYNTAX:
DEFPLOT {entity-type!},{entity-name},...,[entity~name]
DEF

where:

{entity-type} is a required parameter indicating a valid entity-type
(i.e., Variable, Queue, Resource, Process, Item).

{entity-name} is a required parameter indicating the name of the entity
whose value is to be plotted. The user can enter a list of entity names

(up to a maximum of eighty characters) of the given entity type at a time.
Multiple DEFPLOT commands can be used to define more plots.

FUNCTION RESULT:

This command causes an attribute form to be displayed, from which the user
must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
fram which the user must select one statistic. The list of statistics
displayed depends on the entity-type and attribute selected.

If only one choice for either an attribute or a statistic exists, the form
is not displayed. The forms displayed are shown in figures 7-3 through
7-7. A sample plot is shown in figure 7-8. After the simulation has
generated plot data, the plots can be displayed at the user's graphics
terminal using the PLOT command (see section 7.12) and printed on a
graphics printer (see appendix A.4).

A maximum of ten plots may be specified during any Analysis session.

7-7

YT TS -

SIS

G e 2

Figure 7-3. DEFPLOT Form for Items

Figure 7-4. DEFPLOT Forms for Process

7-8

DA

vy

LA el fad &

T Uy

S S T T T T T T T T W = "‘T

N A R] Lot)
N METT Ty T
- e 1.
NMTOD Ty o
R S
TTME Ty [
- N

‘

£
'
T

4
'
’

SEF TN,
PE21I0 WiN

Figure 7-5. DEFPLOT Forms for Queues

I BT DA T
N TS

L N

ARiT 7T

3TV T
ALILETT TINE

ITATIITIIS (PLACE SN L NE(T 77 InLe IME)

Py
-

- - .Y
TR OITANT

b3
CWULATIVE wiN
CMULATIVE wat
SERIID vEANM
PER ITANDARD DEV
PERICD WIN
277D wAX

s o e

Figure 7-6. DEFPLOT Forms for Resources

s aa o e o s ime on

e e o e - B .
e e T T e T .

. o, e UL LN

T PRSI W T, R W U R T Y TP

AT A £V
M OITINCEID CEY
LATIE

PERIID WEN
SER STANDRRD Y

2ERICD wiN
2CR1ID wAL :
Figure 7-7. DEFPLOT Form for Variables
2729980 , s — e ; —
. 'L LRPENT TIME TN SYSTEM FIR ITEM SG .
999999 4 : +
1362909, + ‘ -
. l .
52908, - : .
17w, - .
Py x i 5
150, . : | : , +
T ‘ i o 7 .
s NI 1 ; l ”i . .
- ~ o g N],
536809 .3+ |‘) i:‘ ; I {I'E , ‘ ¢ =‘: +
. : :l I)1 i gt
' AT L Y N S
144009 .9 + ‘ ; v ;’; Hil 11 IR N ' .)
. I IR B S 1 O R B .
4 N TS L H IR ,
2329989+ l'# | ‘\H;}L;w&‘l !f; !\I ‘.!'!1“ A i
. A ' | HE Ry ! if.i‘ AR el ~)
SIESLRILA RSN LYY 0 O AN I AR N VA AN .
3 1529999 . ‘800U, 4520000 . ;agense, <auove.
“ca0e8.3 2262908, 1750000, 5253000. TS0,
SLK N MITS
. L N S
A N P T
Figure 7-8. Sample Plot

AUI / DELETE

7.3 AUI COMMAND: DELETE

DELETE is a pre-simulation command that allows the user to delete plot
definitions which were set up through the DEFPLOT or GET cammands.

COMMAND SYNTAX:

DELETE TITLE, {titlenuml},..., [titlenumn]

TITLE,*
b DEL

! where:

{titlenum)} is a required parameter indicating the number of the plot
definition to be deleted. A list of definition numbers may be entered, or
entering un asterisk, "*", will cause all of the current plot definitions
to be deleted.

FUNCTION RESULT:

This cammand causes the specified plot definitions to be deleted from
those being used for the current simulation run. If the definitions came
fram a definition set in the database, they still reside in that set in
the database, i.e., the database is not modified by this cammand.

This cammand allows a user to retrieve plot definitions with the GET DEF
camand (see section 7.6) and then use only selected definitions for a
particular simulation run.

The user can see the numbers of the current plot definitions with the LIST
TITLE cammand (see section 7.10).

T T S SR N SR S
R S e e A I R

D O TR
e atia im s e AN

.........................
-

. S L . SR T A
R A o e e oA e e e AT

ORI ‘o
RPN RPNy WY WUt S |

T p—— f.vA‘—"—"_'vTv_v-‘*

AUI / EDIT

7.4 AUI COMMAND: EDIT

The EDIT command in the Analysis mode allows the user to change the value
of either a Constant, a Variable, or specification of the randam number
stream used to represent probabilistic events. The value of a Variable
with an alpha literal as its initial value cannot be changed with this
command .

COMMAND SYNTAX:

EDIT {entity-typel},{entity-name}, {new-value}

E

where:

{entity-type} is a required parameter indicating which type of entity is
to be changed (either Constant, Variable, or Stream).

{entity-name} is a required parameter indicating the name of the Constant,
Variable or Stream (Branch, Load, or Action) which is to be changed.

{new-value} is a required parameter indicating the new value of a Constant
or Variable or for STREAM, the new randam number stream. The new value
may be expressed in one to twelve digits, and includes the value zero.

The legal values of "new value" when specifying a randam number stream are
1 through 10.

NOTE: Constants may be changed only before the start of the first
simulation period. Variables and Streams may be changed before the
start of any simulation period or at a breakpoint.

FUNCTION RESULT:

The value of the Constant or Variable or Stream is changed to the new

value, and remains at that value until changed by another EDIT cammard.

This command only affects the current translation of the database;

therefore, at the end of an Analysis session the Constant or Variable or *
Stream is restored to its original value.

If the value of the Stream is not changed, default values are:
Action: 3, for randam Action durations
Branch: 2, for the PROB Primitive

Load: 1, for randam intervals between a Loads' triggering of
‘ another Process instance.

7-12

ORGP L I A 'l e w - e D anes
o e S PR AR TR U RS R TR i DR A A A M A Sl I Sl | AN IR SM A e T ECALS A ANV e A o arare o

AT 7 END
7.5 AUI COMMAND: END
The END command is used to terminate an 3nalysis session.
COMMAND SYNTAX:

END

. FUNCTION RESULT:

This cammand causes all displays to be cleared and, if plots were
generated, asks the user "Do you wish to save plot definitions? (Y/MN)"

and "Do you wish to save plot data? (YMN)" 1If the answer to a question

is yes, the user is prompted for the required information before control
returns to the AISIM READY level. Plot data and definitions are stored in
a file called project.PLT where project is the name of the user's project
database. Upon termination of an Anaylsis session, a copy of the output
report is automatically printed.

Me i B o S Bt S huiod et ek el ot et oid o o

AUI / GET

7.6 AUI COMMAND: GET

The GET camrand allows the user to retrieve a previously saved set of plot
definitions and add them to the current plot specification. The plot
specification defines what plot data will be c¢ollected during the
simulation. The LIST DEF command may be used to obtain a list of the
available plot definition sets.
COMMAND SYNTAX:

GET DEF, {setname}

where:

{setname} is the name of the set containing the plot definitions. The GET
command may be issued only before the first simulation period.

FUNCTION RESULT:

The set of plot definitions is retrieved and made a part of the current
set to be used by the Analysis function.

The LIST DEF command (see section 7.10) may be used to obtain a list of
the available plot definition sets.

7-14

o

-

SN A i A Sl g At Sl A e A e Wt et i el e g o o
- L R i i AR : Ml il At Al Sl el e DA il BB et ke e e e > ——
§ . " v ——— -—1

——

N

aur / o

7.7 AUI COMAND: GO

————y

The G0 cammand allows the user to start or resume a simulation run.
COMMAND SYNTAX:
&0 [n]

G

where:

[n] is an optional parameter that specifies how many periods the
simulation is to run. 1If not given, the default result is that the entire
simulation defined by the selected Scenario is executed. If an n greater
than the number of periods specified in the Scenario is entered, the
simulation executes all periods specified in the Scenario and no more.

FUNCTION RESULT:

This command, which is valid before any simulation period or at a
breakpoint, begins or resumes the simulation of the translated Scenario.

If used to resume the simulation, resumption occurs at the breakpoint or
at the beginning of the next simulation period.

7-15

........

AUI / HELP

7.8 AUI COMMAND: HELP
The HELP command lists, on the user's terminal, the commands that are
valid during each of the three different stages of an Analysis session
(prior, during, or after simulation) .
COMMAND SYNTAX: -

HELP
FUNCTION RESULT:
The HELP command may be invoked prior to, during, or after a simulation
run. When invoked, only those cammands that are valid at that point in
the Analysis session are displayed.

This cammand is valid at any time during an Analysis session.

During each of the three phases of analysis, the user receives a different
output fram the HELP cammand.

HELP invoked prior to sim:
GO.G END LIST L LISTVAL LV
EDIT E SETBREAK SET CANBREAK CAN DEFPLOT DEF
INFRES GET DELETE DEL
HELP invoked during sim:
GO G END LIST L LISTVAL LV
EDIT E SETBREAK SET CANBREAK CAN - PLOT
SAVE S
HELP invoked after sim:
END LIST L LISTVAL LV PLOT

SAVE S

7-16

............. =
....... (S Yia Y

- - . . - M - N i) N *
e L T T e SR e
BT R i S R L I LRI . Sete LTe 0 . LA R N
PIRT AP T W Wy Dy T TP S D Y Ty iy Uiy A W W T W ? "L\.'x"'h'lnl' 'l“‘.‘-!.L-l'l‘L{L.-l";&‘L‘-L..-“L‘.A..;'. {.‘!‘-‘-’};TJ

A ..‘"_\"\‘\-'.ﬁf RRLI AU Be e 4 4 Bl A ek S0 Sl Bl B

AUI / INFRES

7.9 AUI COMMAND: INFRES

The INFRES command causes the simulation to assume the existence of
infinite available Resources for specified Resources.

COMMAND SYNTAX:

INFRES ({entity-name},..., [entity-name]
*

where:

{entity-name} is a required parameter indicating the name of the Resource
for which unlimited units are available. A list of up to eight Resource
names at a time may be entered, or an asterisk, "*", can be used to
indicate infinite resources for all Resource entities in the model. The
INFRES cammand can be entered multiple times to set infinite resources for
more entities.

FUNCTION RESULT:
This cammand, which is only valid before the start of the first simulation

period, allows the assumption that infinite Resources are available for
the specified Resources during the Scenario being simulated.

7-17

CO T AP IRCRR S IS T S
LT S SR S S Pt TNt P T L N L e e e e e
- - " atw, L 0 L B . P S Wl PR » . &S N P - g .
v eg v v T - .~ AR Ve . t et ’ ~t e et A LU SR . - B - e - RN AN .
- I D S T S I P T . . v . <N . . o, . . . - ' . - e et
" - A LS IR 0 S S I A T T A N AT O Tty AR
s e, La. i lie B A s 8

.P.-L.--'-
Sl

S Y ERd At i A A Snfl el M Anib it St e d el ek Aud Aok Aol Al Shel M f me A i Sk st Suul ek e s na s ande Bl se s e

AUI / LIST
7.10 AUI COMMAND: LIST

The LIST command displays all entities of a specified type. Included with
each entity is its name and its description.

COMMAND SYNTAX:
LIST {entity-type}
L

where:

{entity-type} is a required parameter indicating any of the specific model
entities listed below.

ENTITY ABBREVIATION
CONSTANT c
RESOURCE R
PROCESS P
VARIABLE 4

ITEM I

QUEUE Q

PLOT none
DEF none
TITLE none

This comand is valid at any time during an Analysis session.
FUNCTION RESULT:

The user is presented with a list of all existing entities of the
requested type. If the argument is PLOT, a list of saved plot sets

is given. If the argument is DEF, a list of the saved plot definition
sets is given. If the argument is TITLE, a list of the plots defined for
the current simulation is given.

7-18

- ." ‘“- Y S "a -~ -~
. S
WP PR PP S R YRS

. L A M S A AR Sl R D sl M Eved M Snva ab-ollk adtd 2 B aemm o
T BRGNS Rt i A S Al B AN &AL a0d o4R oKk aas o Y T - -~
ST R . R g Al 4 mv———— L A o

AUI / LISTVAL

7.11 AUI COMMAND: LISTVAL

The LISTVAL command allows the user to display the current statistics for
the named entity.

COMMAND SYNTAX:
LISTVAL {entity-type},{entity-name}
LV

where:

{entity~type} is a required parameter indicating a valid Analysis system
entity-type. The valid entity types are the following:

Clock

Constant C

Item I
Process P
Queue Q

Resource R

Stream S

Variable V
{entity-name} is a required parameter indicating the name of the entity
whose value is to be listed. When requesting the Stream for Loads,
Branches or Actions, or the Clock, this field is omitted.

FUNCTION RESULT:

The name of the entity requested is printed out with a listing of all
statistics for that entity.

The prampt "**** Enter YES/Y to continue, NO/N to abort **#*" js
displayed. If the user wishes to end the LISTVAL listing, "NO" is entered
and the AUI READY prompt is displayed. If "YES" is entered the next page
of the listing is displayed, if there is one, with the prampt displayed
again. If there is no further data to be displayed, the user is returned
to the AUI ready level,

RIS o
Ao T T e T e T T T e T Ty
o sneundindetteliotiediotin il st it s B o S o e A

‘ AD-A161 556 ASIN C(AUTOMATED INTERRCTIVE SlllULﬁTlOﬂ MODELING SYSTEN) 3/,
YAX VERSION USER‘.. (U> HUGHES RIRCRAFT CO FULLERTON CA
GROUND SYSTENS GROUP S KNEEBURG FEB 83 ESD- TR-95-12
UNCLASSIFIED F33615-81-C-3098 G 9/,

----:

- ¥
L SR Wl Yo e P b PRI

P AU O S g . "

10 &k 1

=k RN
" 1l £ = |

= e |
] EY T

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS — 1963 - A

. : — . _‘L.'- . ‘
0 . PO B KIKPONINIENES B MIRIOTARMN] SIS 5P

o

e
(NN

e

oy

-

e e JEe ol SR -
"-*-“r_--.. SETY e, “-":P’."?P"

A NS G VSR PRSI

. A e T W e WLTee s wrt N - bt ama aras s es sral oy LAl s st oo o > T -
{»~. . S TS DA A A AT b S R A I AL Pl il sy aea e ey " v
.. . T T N . B - . - <. R S N A I S il Al Al tdt hdh Sl S g Al A 73"1

AUI / pLOT

7.12 aUr COMMAND: PLOT

The PLOT cammand allows the user to produce a graph of the plot data
collected during the simulation.

COMMAND SYNTAX:
PLOT
FUNCTION RESULT:
This comnand, which is valid at the end of a simulation period or at a »
breakpoint, causes the display of a form containing the plot titles which

were defined using the DEFPLOT cammand (see section 7.2). From this form
the user may select any, all, or none of the listed titles.

When the selected titles have been entered, the user is presented with the
plot grid. The selected plots are produced and the user is prompted for
more Apalysis mode commands.

Each of the plots is produced in a unique line pattern.

Once displayed on the terminal, graphs can be transferred to a hardcopy
device (see appendix A.4). An example of the form that is displayed to
allow the user to select a plot is shown in figure 7-9. A sample plot is
shown in figure 7-10.

NOTE: Due to limits imposed by graphics screen resolution, only a sample
of the data points produced by the simulation are included in the
plot (see appendix A.3).

. 2U3CE N L NEXT T3 THE TITLES YU 4ISH 7D SUTT
CURQENT TIME [N SYSTEM FIR ITEM %SG
CURPENT # !N 4AIT QUEUE FDOR RESGURCE CH
SUMULATIVE MEAN ¢ [N WAIT JUEUE FOR RESOURCE CH
TURRENT NUMBER !N SYSTEM FOR iTEM MSH
Figure 7~9. Sample Form for Selecting Plots

2. Y i . w——. et
- . ZJ"QE.' #IN 10T LTI TOR QUIGURCE W .
2. cesmes 2. TMULATIVE MEIv 4 T AL GUEDE FOR RESDURCE CH i
. 17 e ENT NUMBE2 T I.ITIM TOR TTEM MGG +
- 3"“‘!. M -
- - : T
- 7. S04 vy +
- - [, b .
' :
- <. 20000 : v : s
12.50000+ . vty 4
3 4 St | [
X T A - " ‘ * !
_; 19.50908 4 ' "y ' \ ¥ { +
X + I J i N { ' f‘ LI +
?.commeet ! » N Vi AN
t
+ h | € o :‘ \‘ \ .'\l { V
) S.0000m4 !\ W o y
iy AT i\ VYA
2.50m00b" | 7 A A AV
W 'j i R -v‘v-l--'L --------- A4 _\u'\.’l
NI SN DR VI AV S WA WY A U i
[1500008 . 1990400 . 4500000, 5000008, 7500008
T50000.8 250008, 3750000, 5250000, £750000.
SLICK 1N TS
o n b _ -
et AR Yttt) T T
- Figure 7-10. Sample Plot
a 7-21

et tamae e e e
LN - K - - - - - - - - - ® . - ~ e . . - . >
T _.* ,...., e e e e e e T e A e LN A
- .\ - L3 ..-_-.'_-_- P NP I YR

“« e
T

CNEMEME N

AUI / SAVE

7.13 AUI COMMAND: SAVE

SAVE is used to save current plot definitions or plot data and transfer
them to the Analysis database.

COMMAND SYNTAX:
SAVE {settype},{setname}, (descr]
where:
{settype} is
1. DEF to save plot definitions, or
2, PLOT to save plot data.
{setname} 1 to 8 character name to be given to the set.
[descr] is a description of the set.
FUNCTION RESULT:
Plot definitions or plot data are flagged to be saved in the Analysis
database when the Analysis session is temminated. If {setname} already
exists, the user is queried to reuse the old set. A "yes" response will

replace the old set with the new set, A "no" response will cause a prompt
for a new set name.

7-22

IRt

A ey

[IRt ara ar Ao bt b &8 & 20 0 102 s

AUI / SETBREAK

7.14 AUI COMMAND: SETBREAK
The SETBREAK command allows the user to set a single breakpoint in the
simulation run that is executed when a defined relationship has been
satisfied.
COMMAND SYNTAX:

SETBREAK {entity-type},{entity-name},{rel-oper},{value}

SET

where:

{entity-type} is a required parameter indicating which type of entity is
to be tested (Variable, Resource, or Process).

{entity-name} is a required parameter indicating the name of the entity to
be tested.

{rel-oper} is a required parameter indicating the relational operator (EQ,
NE, LE, GT, GE, LT) of the test.

{value} is a required parameter used to set the value for which the named
entity is to be tested. This value may be expressed in one to twelve
digits, and includes the value zero.

FUNCTION RESULT:

A breakpoint is usually used in verification of a model or to examine
Variable values. Typically, a simulation run executes start to finish and
does not allow the user to examine the simulation state at specific times
during simulation. The breakpoint allows the user to halt the simulation
and examine its state based upon the value of some system element.

This comand causes an attribute fomm to be displayed, fram which the user
- must select one attribute. The list of attributes depends on the
entity-type selected.

When the attribute form has been entered, a statistics form is displayed,
fram which the user must select one statistic,

If there is only one choice for either an attribute or a statistic, the
form is not displayed. Attribute and statistic forms are shown in figures
7"4' 7-6' at‘ﬂ 7"7.

This cammand is valid at the beginning of a simulation period or at a
breakpoint,

N

When a breakpoint is reached, it is automatically cleared.

L
~
)
~N
(V]

B T S O N s —— T—T
" " T — " ! - T ——r—— G e A - St o it A e~ s e g

7.15 TERMINATION OF AN AUI SESSION

An AUI session is terminated and control is transferred to the AISIM READY
level through the cammand:

END
FUNCTION RESULT:

When the END command is issued, any plot data or plot definitions which
the user saved during the AUI session are placed in the user's Analysis
database. Any attempts to reuse plot data or plot definition sets are
resolved at this time. The user is then returned to the AISIM READY

level.

UERAA MR SR anAs . asam o s g

..............

Ratli e

SECTION 8

REPLOT USER INTERFACE (RUI)

The Replot User Interface (RUI) allows the user to:
(1) plot data saved fram previous analysis runs,

(2) to delete old plot data and plot definition sets fram the data
base.

(3) create new plot data sets fram data previously saved in separate
plot data sets.

When plot data is retrieved fram the Analysis database via the GET command
(see section 8.4), the plot data is stored in a temporary plotset. This
temporary plotset exists for the current Replot session only. Data from
different Analysis runs may be retrieved fram the database. All of the
data is then stored together in the temporary plotset, and may be plotted
on the same graph. The SAVE command (see section 8.7) will store all of
the data in the temporary plotset into a new, permanent plotset in the
analysis database. The temporary plotset can be cleared out (i.e., plot
data in it is deleted) using the CLEAR command (see section 8.1). The
CLEAR command does not affect permanent data stored in the database.

Once displayed on the terminal, plots can be transferred to a hardcopy
device (see appendix A.4).

The RUI level cammands are described in detail on the following pages.

.......

CLEAR

DELETE {settype},{setname}
DEL

END
GET PLOT, {plotset}

LIST {entity-type}
L

PLOT

SAVE PLOT, {plotset},[description]
S

Figure 8-1. RUI Coammand Summary

Pl N A S e ety

RUI / CLEAR

8.1 RUI COMAND: CLEAR

CLEAR is used to delete plot data in the temporary plotset and to clear
the screen.

COMMAND SYNTAX:
CLEAR
FUNCTION RESULT:

The temporary plotset is emptied, and the screen is cleared. Plots saved
in the database are unaffected.

RUI / DELETE

8.2 RUI COMMAND: DELETE

DELETE is used to delete a set of plot definitions or plot data fram the
Analysis data base.

COMMAND SYMTAX:
DELETE {settype},{setname}
DEL
where:
{settype} is:
DEF to delete plot definitions, or
PLOT to delete plot data.
{setname} is the name of the set to be deleted.

FUNCTION RESULTS:

The specified set of plot data or plot definitions are deleted from the
Analysis data base. The current temporary plot set is unaffected,

TN

8.3 RUI COMMAND: END
END is used to exit the RUI.,
COMMAND SYNTAX:

END

FUNCTION RESULT:

The user is returned to the AISIM READY level.

. . RUI / GET
F 8.4 RUI COMMAND: GET
.-
{f GET is used to retrieve a set of plot data and to make it part of the
5 current set of plots to be displayed by the PLOT cammand,

COMMAND SYNTAX:
GET plot,{plotset}
where:
{plotset} is the name of the set containing the desired plot data.

FUNCTION RESULT:

The set of available plots is displayed. The user is then prompted for
the plot(s) to be retrieved for use by the PLOT cammand.

The names of the plot data sets may be listed using the LIST command (see
section 8.5).

.............

| 4 SR O IAT R A S R A et e A h ol b tet tg aa i o
" a4 " e o PPy

RUI / LIST
8.5 RUI COMMAND: LIST

LIST is used to list all entities of the specified type.

COMMAND SYNTAX:
LIST {entity-type}
where:

{entity-type} is a required parameter indicating a valid entity type. It
can be one of the following:

DEF to list plot definition sets

PLOT to list plot data sets

TITLE to list current plot titles
FUNCTION RESULTS:

Names of all entities of the requested type are displayed.

-

8~7

, '.{ \._-'._.‘-_-.... S T i LN

P T A . o L,
S S T A N A A A P A T

OO ST ey Ve, .
3P . Rt i o PP A S

RUI / PLOT
8.6 RUI COMMAND: PLOT
The PLOT cammand is used to display a plot of the activity of an entity.
COMMAND SYNTAX:

PLOT
FUNCTION RESULT:

The set of available plots is displayed. The user is then prampted for
the plot(s) to be graphed.

When the selected plot titles have been entered, the appropriate plot is
displayed. Each of the plots is produced in a unigue line pattern. If
only one plot is defined, it will be displayed with no prampting.

Once displayed on the terminal, plots can be transferred to a hardcopy
device (see appendix A.4).

A Bt o S i e S S N S A Bt i At S i St 2 A i Send et e e e S

RUI / SAVE
8.7 RUI COMMAND: SAVE

The SAVE cammand is used to save the data in the current temporary plot
set into a permanent plotset in the database.

4 COMMAND SYNTAX:

SAVE {setnamel}, [descr]
S .

where:
{setname} is a 1 to 8 character name to be given to the set
[descr] is a description of the set

FUNCTION RESULT:

The plot data contained in the temporary plot set (as a result of previous
GET PLOT cammands) is saved into the new plot set. This camnand enables
the user to cambine plots from various simulation runs into a single
plotset.

SECTION 9

HARDCOPY USER INTERFACE (HUI)

The Hardcopy User Interface (HUI) is used to plot the flowcharts for ome,
several, or all Processes in the specified project database. In order for

the Hardcopy Function to be exercised, the following conditions must be in
effect:

For an HP2647 terminal:

1. An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB communications bus.

2. The HP-IB bus address of the printer must be set to one (l).

3. The printer must be turned on and set to ON LINE mode.

4, For proper formatting, the length of the paper in the printer
must be either 8 1/2 inches or 11 inches long.

For a TEK4105 terminal:

1. A TEK4695 graphics copier must be connected to the TEK41l05
terminal.

For an HP2623 terminal:
1. The internal printer must be functional.
The HUI is entered fram the AISIM READY level by typing the cammand:
HCOPY [PROJECT (project)] [TERM(terminal)]
where:
[PROJECT (project)] is an optional parameter indicating the project

database with the Processes of interest. If omitted, the project is

assumed to be the last project specified in a previous AISIM READY level
camand.

[TERM(termminal)] is an optional parameter indicating the type of terminal
the user is logged on to. If omitted, the terminal type is assumed to be

the last terminal type specified. The valid terminal types are the
following: '

HP - HP2647A terminal
HP23 - HP2623 terminal
TEK - TEK4105 terminal

A S v gusl ara sus ces LN b NS J0ME L S AS-RAR- e -ader CafiEh it i s Sy PO TR TN T ST T TR T
A e e T Te s P T . - . ~ . -~ T T . M

The first information that the HUI requests is:

PLOT ALL THE PROCESSES IN DATABASE? (YES OR NO)

The user responds with "NO" to specify selected Processes for plotting. A

"YES" response will cause the system to autamatically plot all of the
Processes contained in the project data base.

The system then requests information about the printing medium for an
HP2647A terminal:

ENTER PRINTER PAGE SIZE (A/B):
A) 8 1/2 INCHES

B) 11 INCHES.

LENGTH=

Depending on the paper in the graphics printer, the user responds by
entering "A" or "B". This information is used by the HUI to center the
Process graphics on the page and to insure correct form feeding. Entering
any other option besides "A" or "B" causes the prompt to be reissued.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG THE T.O.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

By doing this, the user sets up the proper aligmment of the paper in the
printer and initiates execution of the Hardcopy plotting software.

When the carriage return has been entered, the HUI begins the plotting
procedure by initializing the HP2631G printer with the correct form
information. This initialization is usually characterized by a rapid
movement of the print head.

If the user is on an HP2623 temminal, only the following prompt occurs to
start the Hardcopy operation:

POSITION THE PAPER PERFORATION ALONG THE T.0.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

When the user presses the carriage return, AISIM initiates execution of
the Hardcopy plotting software.

Note: the following terminal configuration must be set up on the HP2623
teminal in order to run the Hardcopy program. These settings need to be
set only once unless their configuration is changed at some later time.

First press the following function keys:

<AIDES>

<CONFIG KEY>
<DATACOMM CONFIG>

A TETYTYY

Then tab through the form display to the
RECV PACE

field. Press the NEXT key until the field reads
XON/XOFF

Then tab to the
XMIT PACE

field. Press the following two keys:

<CONFIG KEY>
<TERMINAL CONFIG>

Tab through the form to the
INHNDSHK (G)

key and press the NEXT key until the field reads
YES

The terminal is now set up for the Hardcopy function.

If the user is on a TEK4105 terminal, the following information is
requested:

ENTER PRINTER PAGE SIZE (A/B):
aA) 8 1/2 INCHES

B) SMALLER COPY SIZE

LENGTH=

This information is used to create standard size flow diagrams or reduced
size diagrams.

The user is then instructed to:

POSITION THE PAPER PERFORATION ALONG THE T.0.F. INDICATOR
LINE ON THE PRINTER AND DEPRESS THE CARRIAGE RETURN.

When the user presses the carriage return, AISIM initiates execution of
the Hardcopy plotting software.

If the user has requested automatic plotting of all of the Processes, they
are plotted in alphabetic order.

1f the user asked to select Processes, the following prampt is given:

PROCESS NAMES TO PLOT: (CR TO EXIT)

9-3

AT wT TR TS TR RafCad v AR A A S o/ ~adiin ~ i sl i SBREN AR i it R

The user then supplies the name of the Process he wishes plotted, followed
by a carriage return. The Process is plotted and the HUI responds with:

<Process name> PLOTTED

The system will then give the selection prompt again for another Process
to be plotted. The user continues entering Process names one at a time,

followed by a carriage return, or exits the HUI by entering a carriage
return only.

The way in which the HUI plots a Process in either of the two modes
described above is as follows:

1. The first screen of Primitives in the Process are painted on the >
screen of the terminal.

2. The Process name is written at the top of the page.

3. If the first page of the Process is being plotted, the Process
description is also written across the top of the page.

4, The Process graphics are transferred fram the temminal screen to
the page in the printer and a form feed is generated.

5. If there are no more Primitives in the Process, the plotting is
terminated for the Process; otherwise, the terminal screen is
erased, and next six primitives are painted on the screen, ard
steps 2 through 5 are repeated.

When the HUI has finished plotting all of the requested Processes, the

message "ALL DONE" is printed and the user is returned to the AISIM READY
level.

L

ARl i e S s s Bt B e 2 0

SECTION 10

LIBRARY USER INTERFACE (LUI)

The Library User Interface allows the user to do the following:

1. Move entities from a project database into a storage area called
a "buffer” using the MERGEOUT sublevel of the LUI.

2. Move entities from a buffer into the database of another project
using the MERGEIN sublevel of the LUI.

3. Move entities from a buffer into a library of entities using the
CHECKIN sublevel of the LUI.

4, Move entities from a library to a buffer using the CHECKOUT
sublevel of the LUI.

5. Convert a pre-version 4.0 project database to a version 4.0
campatible project database.

Two libraries are available. One is a user library in which a user can
place entities for private use. Another is an AISIM system library which
contains models available for public use. Models are groups of AISIM
entities which represent same function or group of functions (see the
message routing submodel, appendix D). There are restrictions on the
placement of entities in the system library because it is desirable to
insure that the public models are not lost or tampered with. For this
reason, general users cannot modify the AISIM system library. Access is
restricted to the AISIM administrator.

The LUI sublevel is accessible fram the AISIM READY level by issuing the
command

LIBRARY
The system will then respond with the prompt:
LIBRARY READY
and the user may invoke any of the five LUI sublevels listed in the LUI

Camarxi Summary figure 10-1. Figure 10-2 shows the actions of the various
LUTI functions.

10-1

T W T T ——y

‘‘‘‘‘

.............

CHECKIN
CI

CHECKOUT

CONVERT

CON

MERGEIN
MI

MERGEOUT

[BUFFER (buffer))
(B(buffer)]

[BUFFER (buf fer))
{B(buffer)]

[PROJECT (project))
[P(project)]

[PROJECT (project))
[P(project))

[PROJECT (project))
[P(project)]

Figure 10-1.

(LIBRARY (library))
(L(library)]

[LIBRARY (library)]
{L(library)]

[TERM(terminal)]
[T (teminal)]

[BUFFER (buffer))
[B(buffer)]

[BUFFER (buffer))
[B(buffer)]

[TERM(terminal))
[T (terminal)]

[TERM(terminal))
[T(terminal)]

[TERM(terminal)]
(T (terminal)]

[TERM(terminal))
[T (terminal)]

LUI Command Summary

10-2

J0IRIISTUTIPDY

oaed (L1833rq) 133309 (11844nq) 13340 aseg
eleg (2108 01d)400(o..aw uradiay (ZK1eagyT)AIe Bﬂw oo eleQ
2 o9(o01d | q— 2K 1e1qTT
3N
S
(11334n0) 19340 w
(ZAriqrr)Areiqrr] VPRI
Ng 1343
Ly /
A—uuumaaquum:nw
— (1Are1qyr)Ameiqrr) VPO
o0 aseg
e1eQ kg
1393(o0xd LA101qTT
435N (L1343nq) 1334nq (L1333nq)13)3nq
— C.«ooqouavuoo_.o»nw Wos01ay ?EcS«dEﬂﬁL 0R03Y HALSAS

walsAs

Library Utility Data Flow Diagram

Figure 10-2.

10-3

-
»

s

N

>
)

A

o - .
- - -

et et At et At
DY W W Wl W N

.-
=

PRI W
[P RS W

PR N A R W
-t R

--..
DO

S

T

" I

LUI / CHECKIN

10.1 LUI COMMAND: CHECKIN
To move the contents of the buffer to a library for permanent storage, one
issues the CHECKIN command. The user is prampted for the name of the
model to be checked in, as well as an optional reference number and
description.
To enter the CHECKIN sublevel, issue the cammand:

CHECKIN (BUFFER(buffer)] (LIBRARY(library)}] {TERM(terminal)]

CI [B(buffer)] [L(library)] (T (terminal)]
where:
[B(buffer))] is an optional parameter indicating the buffer fram which
entities are to be taken. If omitted, the buffer is assumed to be the
last buffer specified in a previous LIBRARY READY level command.

[L(library)] is a required parameter indicating the library into which the
entities are to be entered.

[T {terminal)) is an optional parameter indicating the type of terminal the
user is logged on to. If amitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level camand, The valid terminal types are the following:

HP - HP2647A or HP2648a terminal
HP23 - HP2623 terminal

TEK - TEK4105 terminal

VI - VT100 temminal

FUNCTION RESULT:

The system queries the user for a required model name and an optional
document reference number and description, After getting this
information, the entities in the buffer are put into the library specified
under the given model name.

10-4

T

LUI / CHECKOUT

10.2 LUI COMMAND: CHECKOUT

To copy a model stored in a library to -~ buffer, one enters the CHBCKOUT
camand. At this point the user can obtain a list of the models contained
in the library or a list of the given entity types contained in a named
model through the LIST cammand (see section 10.2.5). Models are copied
individually through the EXTRACT cammand which specifies the model to be
copied. A HELP camard is available, The CHBECKOUT sublevel cammands are
described in detail in sections 10.2.1 through 10.2.5.

To enter the CHECKOUT sublevel, issue the cammand:
CHECKOUT [BUFFER(buffer)) [LIBRARY(library)] [TERM(temminal))]
Cco (B (buffer)) (L{library)] [T (terminal))
where:

[B(buffer)] is an optional parameter naming the buffer into which entities
are to be placed. If omitted, the buffer is assumed to be the last buffer
specified in a previous LIBRARY READY command.

(L(library)] is a required parameter indicating the library fram which the
entities are to be taken.

{T{terminal)]) is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the temminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level cammand. The valid temminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal

TEK - TEK4105 temminal

VI - VT100 terminal

FUNCTION RESULT:

The model or models specified by the user are written out to the buffer,
Fram the buffer they can be included in a project with the MERGEIN
command.

10-5

'.",".E;-, PR e

DELETE {model~name}
D

END
E

EXTRACT {model-name}
EXT

HELP

LIST {model-name}
*

Figure 10-3. Checkout Command Summary

L4
10-6
- “..‘‘..'.‘-.’.- - . o ..'.- . N ..'. . fa c et . -t . - " s . P et et . e - ~
el A - L e T T N R LT L R SR S L P N T TN T T N !
A A I N B I I PSS I SIS SO S IS NN SN SRR RIS IF I SIIIRSIINS

h CHECKOUT / DELETE

! 10.2.1 CO COMMAND: DELETE

b The DELETE cammand instructs the system to delete a specified model from a
user's library.

COMMAND SYNTAX:
DELETE {model-name}
D
where:
{model-name} is the name of the model to be deleted from the library.
FUNCTION RESULT:
The specified model is deleted fram the library. If a user attempts to

delete a model fram the system library, the following message is
displayed: "THIS ACCOUNT IS MNOT AUTHORIZED TO MODIFY THE SYSTEM LIBRARY."

10-7

R B U A S S S D L PASN
..... ST N e L S AT L R TP I

- . - -
- o -
R IR ST e T T, e e e T T T A T T N TN e,
PTG, USSP AP AL LN PR W N UL W AP M P PP S R PU P P ST ST S W W R ST L PN R R T A Y

o~ - e CRERCUREE AEaratal- Sehe thet- REC S e IS Al Sma A ARCESS Srhs S St MAn Sl SAs 0 n Sen flas Ben e Sine 4 Y W T T W T WY

CHECKOUT / END

10.2.2 CO COMMAND: END

The END cammand causes the system to exit the CHECKOUT sublevel and return
the user to the LIBRARY READY Level.

COMMAND SYNTAX:

END
E
F FUNCTION RESULT:

If any models were selected for extraction, the entities are written to a
buffer.

The system then returns to the LIBRARY READY level.

10-8

Y S T S S P S
A S St e,

- T et IR
I P L I “ et

CHECKOUT / EXTRACT
10.2.3 CO COMMAND: EXTRACT

The EXTRACT command instructs the system to copy a model from a library
into a buffer.

COMMAND SYNTAX:
EXTRACT {model-name}
EXT
where:
{model-name} is the name of the model to be placed in the buffer.
FUNCTION RESULT:

The model specified is copied from the current library into the current
buffer.

10-9

S Sy e

Y T Y T N TV TV Ty T T -

CHECKOUT / HELP

16.2.4 CO COMMAND: HELP

The HELP cammand enables the user to obtain a menu of the other commands
available in the CHECXOUT sublevel.

COMMAND SYNTAX:
HELP
FUNCTION RESULT:

A menu of available cammands is printed on the screen. .

10-10

MBI G a0 o -d g e e
R EadC Sadic e A S | R Sl sah S oat _sed b
N P R c e e e o Ve e e .

- Pl s .

v aW s W W TN T VY v.‘,vj'v"

CHECKOUT / LIST
10.2.5 CO COMMAND: LIST

The LIST camand enables the user to obtain a list of the models contained
in a system or user library, or to list the entities in a particular
model .

COMMAND SYNTAX:

LIST {model-name}

*

where:

{model-name} is the name of a model in the library

* is a literal parameter, indicating all models in the library.
FUNCTION RESULT:

If the parameter {modelname} is used, the system will display a list of
the names of the entities in the indicated model. After the names of each
entity type are displayed, the user is given the option of continuing to
list model entities or of returning to the CHECKOUT ready level. If the
parameter * is used, the system will display a list of the names of all
the models in the library.

v v‘v‘:v'r-r P
e v
G . -

[

hiffh
PERPEL

10-11

. S UL L P S S
OO I I L A I N L A

PR AT LRI LYY S
ERL AP AN AP PSP PO Py, W WA

NC Al GNP RSAE Ji ~ i S i

LUI / CONVERT

10.3 LUI COMMAND: CONVERT

The CONVERT command enables a user to convert a pre-version 4.0 project
database into a 4.0-compatible database. O0ld databases are incampatible

with version 4.0, so all old databases must be converted before they can
be used with version 4.0.

COMMAND SYNTAX:

CONVERT (PROJECT (project)] [(TERM{terminal)]
CON [P(project)] [T (teminal)]

where:

[P(project)] is a required parameter indicating ‘he name of the project
being converted.

[T (terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If amitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level camand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623 terminal

TEK - TEK4105 terminal

VI' - VT100 temminal

FUNCTION RESULT:

The project database project.DBF is saved in a database called
project.V30. The project database is then converted to a version 4.0
database and stored in the project name project.DBF. This database is now
suitable for use with all AISIM version 4.0 functions,

I T I ISR A S U SP TR B S L R ST SR P ST LN S S S A S T T T te T T O IR D T
T T e e T e e e e e e e e T e e e T et e
R A A S A R A A &7 St A e N T N e T T T RS e

e Y R

VVWT'W
S] v - g TV T ———

LUI / MERGEIN
10.4 LUI COMMAND: MERGEIN

To move the contents of a buffer to a project database, one enters the
MERGEIN camnand, specifying the name of the buffer and the name of the
project into whose database the buffer contents are to be copied.

COMMAND SYNTAX:
MERGEIN (PROJECT (project)] [(BUFFER(buffer)] [TERM(terminal)]
MI [P(project)] [B(buffer)) [T (terminal)]
where:

[P(project)] is a required parameter indicating the name of the project
into which the entities are to be merged.

{(B(buffer)] is an optional parameter indicating the name of the buffer in
which the entities are stored. If omitted, the buffer is assumed to be
the last buffer specified in a previous LIBRARY READY command.

[T(teminal)] is an optional parameter indicating the type of temminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last termminal type specified in a previous AISIM READY or LIBRARY READY
level cammand. The valid terminal types are the following:

HP - HP2647A or HP2648A terminal
HP23 - HP2623A temminal

TEK - TEK4105 terminal

VT - VT100 terminal

FUNCTION RESULT:

If no entity in the buffer is the same as an entity already present in the
database, the system responds:

0 CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION
in which case the copying of the buffer contents will be campleted and the
user will be returned to the LIBRARY READY level. If one or more names of
entities conflict with ones already in the project database, the user will
be prampted with:

n CONFLICTS HAVE BEEN DETECTED IN MERGEIN INITIALIZATION
where "n" is the number of conflicts. The system then asks:

DO YOU WISH TO RESOLVE THESE CONFLICTS?

Answering "no" aborts the Mergein, If the answer is "yes", the system
will then present the name of an entity which stands in conflict.

10-13

............

The user now has three cammand options to resolve the naming conflict.
First, he may command that the entity in the database be deleted in favor
of the one of the same name in the buffer. This is done by entering
REPLACE (RP). Secondly, he may cammand that the entity in the buffer
which aroused the naming conflict be disregarded in the transferral from
the buffer to the database. This is done by issuing the cammand IGNORE
(IG). Thirdly, one may resolve the naming conflict by giving the entity
in the buffer a new name. This is done by means of the cammand RENAME
(RN) whose one parameter is the new name the user wishes to give the
entity. If the user should select as a new name one that is also being
used, the system will respond with a prampt for a different name. These
cammands are described in detail in sections 10.4.1 through 10.4.6.

This cycle of naming conflict resolution will be repeated until all of the
naming conflicts have been resolved. The system will then tell the user
that MERGEIN initialization has been campleted, do the MERGEIN and
autamatically return the user to the LIBRARY READY level,

NOTE: Resources associated with an architecture are not subject to the
REPLACE coammand.

[T e A A A Al A N A e e e

HELP

IGNORE
IG

INFO

RENAME {namel}

RP

PRI PR “e st Lt
- Tt e,
L TR AR PN)

v ow v as
Y

10-15

COMCIY ~ et
atala et ot e

Ml A g vl art e aei i el aed e ane sul atvl DAL Sat i e A Ml Sde e

WP W

WP

Figure 10-4. Mergein Command Summary

. - e b. . S
adade ot oot

T

L L A L S e
N AP S AU H S
PRI I N Y
P ST W VP R AP Y

MERGEIN / END

10.4.1 MI COMMAND: END

The END command, issued at the MERGEIN sublevel causes the system to exit
the MERGEIN sublevel and returns the user to the LIBRARY READY level.

COMMAND SYNTAX:
END
E
FUNCTION RESULT:

The system returns to the LIBRARY READY level.

10-16

......

. - . - - - . - . . - .
PR Ty I - - - . " - . > - . - . . - . Lo . PP . e . e -
PP JOR WPy St TN S TP TPRS SPUR, SPUSED W D GLEPE. JPAL IP G PR S, R T A PR VAP) S kAt o
o At

......
.........

N U A o B 40 A S g e b e -3

MERGEIN / HELP

10.4,2 MI COMMAND: HELP

The HELP cammand enables the user to obtain a menu of the cammands
available in the MERGEIN sublevel.

COMMAND SYNTAX:
HELP

FUNCTION RESULT:

A menu of available cammands is printed on the screen.

10-17 " b

MERGEIN / IGNORE

i 10.4.3 MI COMMAND: IGNORE

The IGNORF cammand enables the user to resolve any naming conflicts
encountered at the MERGEIN sublevel in favor of the entities that already
exist in the target database.

COMMAND SYNTAX:
IGNORE
1G
FUNCTION RESULT:
The entity indicated by the prompt is not copied into the project

database. The system then prampts the user with the next naming conflict,
if any, and proceeds with MERGEIN operation.

10-18

k. PRI e e Tt e e e e e e T e T - . B R .
B P S S PR AT TR S T e S RSV PO RS . N .
PR TR S e L SRR S A WAL IPOPR, W P T P R A A A A T A TP A SR O SLS OO

MERGEIN ,/ INFO

10.4.4 MI COMMAND: INFO

t The INFO command furnishes the user with information on the options
1 available to resolve naming conflicts encountered in the MERGEIN sublevel.
’ COMMAND SYNTAX:

INFO

IN)

FUNCTION RESULT:

The screen displays the following information:

IGNORE: THIS OPTION CAUSES THE NAMED ENTITY IN THE BUFFER TO BE EXCLUDED
FROM THE MERGEIN OPERATION

RENAME: THIS OPTION CHANGES ALL OCCURANCES OF THE ENTITY NAME IN THE
BUFFER TO THE NAME SPECIFIED BY THE USER

REPLACE: THIS OPTION DELETES THE MAMED ENTITY FROM THE USER DATA BASE,
ALLOWING THE ENTITY IN THE BUFFER TO BE MERGED IN

END: THIS OPTION TERMINATES THE MERGEIN PRE-PROCESSING WITHOUT RESOLVING
ANY MORE NAMING CONFLICTS AND RETURNS TO THE LUI READY LEVEL

10-19

......
..............
........................

A . O
R RN ."-'.'.'.‘.'.‘..‘\'.“.-.‘.‘

R A e ANt s aon o
- ” PPy
" —— PPy
.

- AT e Ty e e Rl ath . Aokt San s aage oy ad

PRy

MERGEIN / RENAME

10.4.5 MI COMMAND: RENAME

The RENAME command allows the user to resolve a naming conflict
encountered during -he MERGEIN operation by giving entities in the buffer
a unique name,

COMMAND SYNTAX:

RENAME {namel}

RN
where:
{namel} is the new name the entity is to be given.
FUNCTION RESULT:
The system checks to see whether the new name given to the entity creates
any naming conflicts. If it does, the system will prampt the user to that
effect, and await a new name. If the new name does not create any
conflicts, the entity is copied into the project database under its new
name. If there are naming conflicts with further entities, the system

then prompts the user for their resolution. If there are no remaining
naming conflicts, the MERGEIN operation begins.

10-20

- - .-- - "- -.- - T .
N IV W I A

. . . et a" . n- - '. I. Q~ -
S DRCL I R . Nt
abhmeledad el Sl S A 2 g m e LN N e

MERGEIN /REPLACE

10.4.6 MI COMMAND: REPLACE

The REPLACE cammand enables the user to resolve a naming conflict
encountered in the MERGEIN sublevel in favor of entities that exist in the
buffer.
COMMAND SYNTAX:

REPLACE

RP
FUNCTION RESULT:
The entity indicated in the prompt is written into the database and the
old entity of the same name is deleted. The system then proceeds to

consideration of the next naming conflict if any exist. Otherwise, the
MERGEIN operation begins.

i St Janth Jbaadl Sunc e S i b Sieg f Py e Py - N e oy ——— ———— T T T T T — T Y

LUI / MERGEOUT
10.5 LUI COMMAND: MERGEOUT

When the user wishes to place entities from a project database into a
buffer, he does so via the MERGEOUT cammand, specifying the name of the
project and the name of the buffer into which the entities are to be
copied. Entities in the project are copied one at a time by name through
the SELECT command. If the user needs a list of the entities of a given
type, he may obtain one through the LIST cammand. Also available here is

. the HELP command which provides a menu of the other available commands.

- The END cammand will return the user to the LIBRARY READY level. These

[commands are described in detail in sections 10.5.1 through 10.5.4.

?: To obtain access to the MERGEOUT sublevel, issue the cammand,
MERGEOUT [PROJECT (project)] [BUFFER (buffer)]) [TERM(terminal)]

MO (P(project)] [B(buffer] [T{terminal)]

where:

[P(project)] is a required parameter indicating the name of the project
fram which the entities are to be copied.

{(B(buffer)] is an optional parameter indicating the name of the buffer
into which the entities are to be transferred are stored. If omitted, the
buffer is assumed to be the last buffer specified in a previous LIBRARY
READY level commard.

[T (terminal)] is an optional parameter indicating the type of terminal the
user is logged on to. If omitted, the terminal type is assumed to be the
last terminal type specified in a previous AISIM READY or LIBRARY READY
level cammand. The valid terminal types are the following:

HP - HP26472 or HP2648A terminal
HP23 - HP2623 terminal

TEK - TEK4105 terminal

VT - VTl100 temminal

FUNCTION RESULT:

The user is given a "*" prompt, from which he can issue one of the
following commands.

1) LIST {entity-type}, to list entities in project database.

2) SELECT {entity-type},{entity-name}, to select an entity to be
merged out of the project database.

3) END, which will terminate the selection of entities to be copied.

10-22

~ T S S T IR St P RS RSN S Cetar >
. o LT L T T T e e e e T Lt W T T e e T T e e Nt e e T e T Yt oot -}.) -7
S e A 2. o LI TR T St IO Sy SOt TP, SR e Jhg PP I Wit Wt T AT T R Ui Wit S W IR Wi TP W WA i G el TS P Sl W LA Wl Sal YA Y/ Gl W Y

L i S A i i St Sl St e i SR At B~ B A s v)
Rl ST LR s T T S R TN TN T T VRN

END
E

HELP

LIST {entity-type}
L

SELECT {entity-type},{entity-name}
S

Figure 10-5. Mergeout Command Summary

T

10-23

e EACI AT AN PEN IENE

......

(I I T S ~ .
L R L

- .- T -
ale”
O TR S

LA

C A i Bl R B Bt el A d 2hd Sk A A Amub S il UL sl set Ak SAR SGNE-daaiut- o hartnredhiie chen Jese doos 2

MERGEOUT / END

10.5.1 MO COMMAND: END

The END camnand terminates the session at the MERGEOUT sublevel and causes
entities in the current project database which have been flagged by the
SELECT command to be copied into the current buffer.

COMMAND SYNTAX:
END
FUNCTION RESULT:
The user will be prompted with the question:
DO YOU WANT TO LIST YOUR SELECTIONS ON THE SCREEN?
A "no" answer will cause the Mergeout procedure to take place. When all

of the flagged entities have been copied into the buffer the system will
return to the LIBRARY READY level,

A "yes" answer will produce a list of the entities flagged in the SELECT
camand. The user will then be prampted as to whether he wishes to
proceed with the Mergeout operation. A "yes" answer to this second
question will cause the flagged entities to be copied into the current
buffer and the system will return to the LIBRARY READY level. A "no"
answer will return the user immediately to the LIBRARY READY level.

10-24

. .
s o' gt ot g

T

vy

< L% e e - . L.
P R P R -
N LA LT

C aigh Lot i S el A e Al gt gy See eie o g

MERGEOUT / HELP

10.5.2 MO COMMAND: HELP

The HELP command enables the user to0 obtain a menu of the other command
options available in the MERGEOUT sublevel.

COMMAND SYNTAX:
HELP
FUNCTION RESULT:

A menu of available cammand options is printed on the screen.

10-25

BRI N
W e e T T e,
M ARSI RR)

.rv-vv‘vww
AR Sl Bl

MERGEOUT / LIST

10.5.3 MO COMMAND: LIST

The LIST command enables the user to obtain a list of the names of the
entities of a given type that are contained in the current project.

-

COMMAND SYNTAX:

LIST {entity-type}

L

where:

{entity-type} is the type of entity. The valid entity types are the
[following:

Action A
Constant C
Ttem I

Process P

M e an o o o

Queue Q
Resource R
‘ Table T
Variable V
FUNCTION RESULT:

The screen will display a list of the names of the entities of the
specified type in the current project.

10-26

R I R N ‘.-._..._‘._..\‘_-_._.‘._._._._- . et
- . X N AN

Sae T P I A I o LI - BONLLTS -
L I. PP PRSP S W Lol a2’ o P f ..' ..' ... - " .l. .‘- .-. .l‘\-\ --.\L-ﬁ_- 2" l. .l .l- .,I- -,l‘:'. -;:\.:!.‘_1 LY

.....

ORGP j

- " Tt - I3 c - LY -
e 0 SR L L R S YA, S

MERGEOUT / SELECT

10.5.4 MO COMMAND: SELECT

The SELECT command allows the user to specify which entities are to be
merged out of a project database to a buffer. Scenarios and Loads cannot
be selected.

COMMAND SYNTAX:

SELECT {entity-type}, {entity-name}
S

where:

{entity-type} is the type of entity to be merged out. The valid entity
types are the following: :

Action A
Constant C
Item I

Process |34
Queue o)
Resource R
Table T
Variable V
{entity-name} is the name of the entity to be merged out.

FUNCTION RESULT:

The specifiéd entity is flagged for the Mergeout operation. The operation
will take place only when the END command is issued.

Py

T

YT a——

r-‘"‘.v,",v‘v’-;. &) ” e

N WY U T e T ey L2 s . A R v '.'1

SECTION 11

AISIM SIMULATION REPORTS

When a simulation is run, a number of Processes are initiated at various
times throughout the simulation period. As their execution proceeds they

contend for available Resources such as machines and operators. The .
simulation stops at the end of a predefined period and produces output
statistics.

In general, any high-level performance factor measurable on a real system
in terms of time, percentages, or counts of events can be measured during
the model run. Experiments that are virtually impossible to run on a real
system can be constructed and easily measured in the model, Specifically,
measures that may be obtained are:

- Resource utilization statistics

- Total number of Processes completed

- Average elapsed time for Process campletion

- System and job delays associated with actions

- Statistics on queue sizes and timing

- Variable changes during simulation

- System and job delays associated with Resources
- Execution count of Process steps

Two forms of statistical output are available to the user as a result of
the simulation. Interactive output, displayed on the terminal screen, is
available at any user-defined breakpoint, at the end of simulation
periods, or at the end of the simulation.

The second form of output is a listing, obtained off-line, which lists the
simulation measures mentioned above.

The following sections describe the simulation outputs and how to obtain
them.

11.1 INTERACTIVE RESULTS AND HOW TO OBTAIN THEM

Interactive results can be viewed on the terminal while in the AUI level.
A review of the AUI level shows that several commands are available for
viewing data after simulation periods, after breakpoints, and after
simulation temmination. The DEFPLOT command is used before simulation is
started to select the graphs that the user wishes to view after simulation
(see the DEFPLOT command description in section 7.2 for attributes and
statistics of entities that can be graphed). The LISTVAL cawnand can be
used at the points mentioned above to view simulation data concerning
model entities (see the LISTVAL cammand description in section 7.11 for
attributes and statistics of entities that can be viewed). The PLOT

11-1

e
.

- - . e e e T LT e s . C . . % Lot T T ST T et WU ettt P TR
L R T i N T R A R SPE o ST R P S L U S I S R IR TL U ST S S o ALV SIS SR NP SR SO ST L S P R
PN PR DAL BRI Rt A AL I, S . S AP PP AR . s T T T T ey T et T T R e e

e v, @ ST W] etV Chad I A W) Y " it i St fint A i A L. - P AR T A S Tt A Sl Rad st

command is also used at the points mentioned above to view graphically the
statistics which were kept due to the DEFPLOT plot definitions. See the
PLOT cammand definition in section 7.12 for examples of the forms and
graphs that are displayed to the user as a result of this cammand.

11.2 REPORT RESULTS A!D HOW TO OBTAIN THEM

The cammands to view and print results are available at the AISIM READY

level. As the simulation executes, simulation results are automatically
stored in a database file named:

project.RPT

where:

project indicates that the model output report to be accessed was
generated by an analyze session on the design database named PROJECT.

Two AISIM READY level commands are available to manipulate this data file.
The PRINT cammand (see section 5.17) is used to print a listing of the
simulation report at the local hardcopy facility. The EDIT command (see
section 5.6) allows the user to view the project.RPT file through the use
of the EDT text editor. See section 11.3 for a brief discussion of
relevant EDT text editor comands. See the EDT Users Manual for
additional information on the EDT text editor.

The project.RPT file contains a number of reports that describe the model
that was simulated and the results of the simulation. On the following

pages each of these reports is described and examples of results are
given.

INITIALIZATION REPORT: This report displays the contents of the model
inputs as used during this simulation. Elements of this report are:

1) Global Constant Definition
2) Table Definition

3) Global Vvariable Definition
4) Item Definition

5) Queue Definition

6) Resource Definition

7) Architecture Legal Path Definition
8) Action Definition

9) Process Definition
10) Load Definition

11) Scenario Definition

Figures 11-1 through 11-5 show the various parts of a typical
initialization report.

11-2

P

Pt

DA Al Ak andE et S o L IR

LAm o o

33388333333833333333S33383333333333333383SSS388333838833383333338833338
SIMULATION REPOR

3 AISIM VERSION 4.0 3
3 HUGHES AIRCRAFT COMPANY 3
02/05/85

833338333383SSSSSSSSS3383SSS33S3SS888SSSS833383883333833383333838388838
GLOBAL CONSTANT DEFINITION.....

CONSTANT INITIAL
MNEMONIC VALUE COMMENT

PERLNGTH 7500000
TABLE DEFINITION....

GLOBAL VARIABLE DEFINITION.....

VARIABLE INITIAL
MNEMONIC VALUE COMMENT

==2== == = SZSESERSDSSRESSISssEEs=E=

B~LNTH 750 TS@ MSG LNTH FOR HQ -> 8

B-PRI 11 11 - PRIORITY OF B-ORIGIN PROCESS

BBLNTH 750 758 - LENGTH OF B NODE TO B NODE MESSAGE

BECHOPRI 11 11 - PRIDRITY OF BECHO PROCESS

CHQGOVHD 28 .000280 - SEC PER WORD OF GRAPHICS OVERHEAD AT CHQ
CHQHOVHD 10 .000100 - SEC WORD PROCESSING OF MARD COPY AT CHQ
CHQLNTH 750 750«FNBeCOMPRESSION = MSG LNTH HQ -> CHQ

CHQPRI 11 11 - PRIORITY OF CHQ PROCESS

GRULNTH 10000 18200 - GRAPHICS RESULT FROM CHQ TO HQ

HCLNTH 200 200 ~ LENGTH OF HARD COPY MESSAGE

HCPRI 11 11 - PRIORITY OF NARD COPY PROCESS

HCRLNTH 6300 6300 - LENGTH OF MARD COPY RESULT

HQAGGLNTH 200 288 -~ LENGTH OF GRAPHICS REQUEST

HQGGPRI 11 11 - PRIORITY OF MQ HARDCOPY PROCESS

HQHGLNTH 209 200 -~ LENGTH OF HARDCOPY REQUEST TO CHQ

HQHGPRI 11 11 - PRIORITY QF HARDCOPY PROCESS

HQLNTM 750 750 ~ LENGTH OF MESSAGE SENT TO HQ NODES

HQOVHD 8 .000980 - SEC PER WORD PROCESSING AT HQ NODES
HQPRI 11 11 - PRIORITY QF HQ PROCESS

RT.QOVHD 8 THIS IS A GLOBAL VALUE FOR ROUTING QVERHEAD
V.ROQUTER @ VONITOR VARIBALE TO PLOT ROUTE QVERMEAD (COMPUTED)
vD.CS 0.000001 CONTEXT SWITCHING DELTA TIVE

M. CS 0.000001 CONTEXT SWITCHING MEAN TIME

VM.ROUTE 8 9.000080 - TIME PER WORD ROUTED

YRATE 33.3 .900333 SEC TIME PER CHAR

VSPEED 9 UPDATED WITH CHANNEL SPEED FOR ALL TRANSFERS

Figure 11-1. 1Initialization Report - Constants, Tables, and
Global Variables

11-3

e e e . . _.- ..-. . ‘. ... A..‘.,-. .‘. _.. .,._..-: '.~~'.._. et e e e e e N
2 e e . . . S et NERAES . . T e .
Sy DI P PG "'A'._ R TS “u 5, S

" . o A e .__.‘._.-.._.._.’.~
SN AW A SR S I AARAL A SRR SUITL S A S L Y

Py

ITEM DEFINITION.

ITEM JESCRIPTION
EEBINIIS=ITET ZIXJTTTIN BE

ACK ACKNOWLEDGEMENT GENERATED AT COMM CENTERS BOUND FCOR S

ATTR, INITIAL

NAME VAL E

HOPS b

LENGTH ACKLENTW

MESS ?

ORIGIN)

RETRAN 1

TNODE a

TYPE $G00D
ITEM DESCRIPTION
MSGo4 VESSAGES GENERATED AT S-NODES BOUND FOR COMM CENTERS

ATTR. INITIAL

NAME VALUE

ACKREC 8

DEST1 1

DEST2 1

DEST3 1

DEST4 1

ENDTM 99999999
ERRPROB ERRPRBO4

HOPS HOPSO4
LENGTH LENGTHS4
NXTACKNM 1

ORIGIN So4
RETRAN 1
SATDELAY DELAYQ4
SNUM SA4NUM

STARTTM $CLOCK

QUEUE DEFINITION.....

QUEUE VAX ITMUM
MNEMONIC SIZE COMVENT
TTTESIZZ SSIZSSI STI=TITTTSIRNZITIRNS == =

CONTROLQ INFINITE PRIORITY ORDERED QUEUE OF RFT MESSAGES

Figure 11-2, Initialization Report - Items and Queues

RESOURCE DEFINITION.....

RESOURCE TOTAL INITIAL
UNEMONIC # UNITS 4 UNITS

81 1 1
ATTR INITIAL
NAME VALUE
cosT 4
D.CS vD.CS
M. CS VM. CS
M.ROUTE VM.ROUTE
RATE 2

B1S1.A 1 1
ATTR INITIAL
NAME VALUE
COST 0
RATE VRATE

81S1.8 1 1
ATTR INITIAL
NAME VALUE
==SE=;=Ex ZES=====
COST [
RATE VRATE

B2 1 1
ATTR. INITIAL
NAME VALUE
COST '
D.CS vD.CS
M.CS VM. CS
M.ROUTE VM.ROUTE
RATE 0

ARCHITECTURE LEGAL PATH DEFINITION

FROM 70 NEXT VIA
DEVICE DEVICE DEVICE LINK
t + + 34 STTJIIS=2T ZS=sz==2

81 81 S1 81S1.A
81 B2 S1 B1S1.A
81 83 S1 81S51.A
81 84 S1 B81S1.4A
B1 8§ S1 B81S1.A
81 L] Si 8151.A
81 B7 S1 8151.A
81 CH S1 81S1.A
81 H1 S1 BiS1.A
81 H2 S1 B1S1.A
81 S1 S1 81S1.A
81 §2 S1 81S1.A
81 S3 S1 B1S1.A
81 S4 S1 B81S1.A
81 S5 S1 B81S1.A
81 S8 S1 B81S1.A
81 s7 st B81S1.A

Figure 11-3, 1Initialization Report - Resources and Architecture
Legal Path Table

N N s e o =y o > _'.*,T

JESCRIPTION

RESQURCE FOR NODE

RESOURCE FOR CHANNEL CONNECTOR

RESOURCE FOR CHANNEL CONNECTOR

RESOURCE FOR NODE

LRI an an gm0 0 s o 0 o

A A e e et

ACTION DEFINITION.....

ACTION ACTION
MNEMONIC CLASS ~ COMMENT L

SETITI=TT S=ESZTSIZ SESCSEISTS===SST=IsSoES=as ===

CHQGD .OH MACHINE CHQ PROCESSING OF GRAPHICS REQUEST

CHQHD.OH MACHINE CHQ PROCESSING OF HARD COPY REQUEST

CS.OM CPY PROCESSING TO PERFORM CONTEXT SWITCHING

QUMMYACT MACHINE ACTION "0 ENABLE CYCLIC PROGRAM CYCLES

HQ.OH MACHINE HQ PROCESSING OF MESSAGE

OVERHEAD MACHINE TIME FOR GENERAL USE

ROUTE.OH CPU PROCESSING OELAY TO ROUTE A MESSAGE AT NODE
XFER.OH CHANNEL PROCESSING OELAY TO ROUTE A MESSAGE OVER A CHANNEL

PROCESS DEFINITION.

PROCESS

MNEMGNIC DESCRIPTION

B-ORIGIN THIS IS A B-NODE STUB PROCESS
ENTRY OPCODE PARM PARM PARM COMMENT

SZSRI=IT ISSTTESZT SSZISIIET SSS==S=SS SSSE==E S====

P T T T T D D T T T T

1 WSG 53)
PROCESS
WNEMONIC DESCRIPTION
BECHO THIS PROCESS SCHOES MESSAGE BACK TO ORIGINATOR
ENTRY OPCODE PARM PARM PARM COMMENT

START ALL NO

ASSIGN MSG FNODE GET ORIGINATING NODE
TO.NODE
CALL MRS WALT "4 ROUTE RETURN MESSAGE

GIVEN 8-0RIGIN B-PRI SREGNORE
B-LNTH TO.NODE
END

LOCAL VARIABLES OF PROCESS BECHO

1 MSG 21) 2 TO.NODE 3 MRS P 4 B-ORIGIN (P)

Figure 11-4. Initialization Report - Actions and Processes

11-6

AN O LA AAS AN A N0 A N DA TGN AN -the -t it M e e o S0 B0 i 2 3 2 40 < N T T T R T

LOAD

MNEMONIC DESCRIPTION

LOADS@7 S7 LOAD ~ROV BASES - 87
LOAD NODES
87 -
PROCESS SCHEDULE
MNEMONIC MAX # METHOD MEAN DELTA PRIORITY
DATABBO7 125 EXPONENT 1440389 @
DATABCHQ 125 EXPONENT 1440389 o
DATABHQL 125 EXPONENT 1440389 2
HCOPYCHQ 125 EXPONENT 1464253)

SCENARIO DEFINITION. ...

SCENARIO

MNEMONIC DESCRIPTION

SCENARIO 300 SECONDS PER PERIOD X 1 PERIODS = 38¢ SECS

PERIOD

LENGTH

===s====

7500000

PERIOD PERIOD PERIOD PERICD PERIOD PERIOD PERIOD
MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC MNEMONIC

1 l

TRIGGER TIME TO SCHEDULE TRIGGER TIME TO SCHEDULE
MNEMONIC SCHEDULE PRIORITY MNEMONIC SCHEDULE PRIORITY

=== = ===Z===S2z =I3I==cT 2==SS=== =s==z===

LOADS®1 9 %] LOADSQ2 @ 2
LOADSO3 o a LOADSO4 @2 4
LOADS26 @ 2 LOADSO8 @ (4
LOADSO7 o 0 LOADHQ1 @ 2
LOADHQ2 o 0

44 ® ERRORS WERE DETECTED DURING MODEL INITIALIZATION

Figure 11-5. Initialization Report - Loads and Scenario

B S P iy —————

11.2.1 Constant Report

This report shows the value of the constants at simulation termination.
An example of this report is shown in figure 11-6 where the labeled
columns have the following significance.

CONSTANT: The name of the Constant

CURRENT VALUE: The Constant's value (in real numbers) at the end of ’
the simulation.

SIMULATION TIME = 3241 20080 UNITS
CONSTANT REPORT

CCNSTANT VALUE. ..

BER . 90091
CCCHRATE 2
CHRATEDY 1
CHRATE@2 2.
CHRATEG3 2
CHRATER4 .8

CHRATEQS .07S

CHRATEQS .97S

CHRATE®7 1.2

CHRATEQ8 .3

CHRATEQY9 2.4

CHRATEL1D .3

CHRATELL 1.2

CHRATEL12 .3 ¥
CLOCKVAL @
DELAYSY @
DELAY®2 @
JELAYQ®3 @
JELAYQ4 @
DELAYBS o
DELAYQOS o

Figure 11-6. Constant Report

et a

L S P
[S T R
..'_‘:‘_-\-_-\ —.'-.\."‘ L e .

P L ML N T T T e e T T Y

11.2.2 Variable Report

Variable reports are divided into the numeric and the non-numeric
variables. A sample of the report for numerical variables is shown in
figure 11-7, where the columns have the following significance.

P

VARIABLE: The name of the Variable.

TOTAL SAMPLES: The number of times the Variable has been set to a
value over the simulation period, including its
initialization at the start of the simulation.

2
CURRENT: The value of the Variable at the end of the
simulation.
MEAN: The mean of all values (including its initial value)

that the Variable was set to over the simulation
{i.e., the sum of the values divided by TOTAL
SAMPLES) .

STD DEV: The standard deviation of the values that the
Variable was set to over the simulation.

MINIMUM: The minimum value that the Variable took on during
the simulation.

MAXIMUM: The maximun value that the Variable took on during
the simulation.

SIMULATION TIME = 7520000 . UNITS
VARIABLE REPORT

I Py Ny =y

NUMERIC VARIABLES...

’ TOTAL ~=-m=mmcemce—commmc - VALUE~-=cmsmmmcmm—ac e cm—mmaa=
b VARIABLE SAMPLES. CURRENT... MEAN... ... STD DEV... MINIMUM... MAXIMUM...
r EEoZ==TER SES=SI===S Z=ES=R=ZfEZT=S ==z ==S==z=xs SZTETSSSXSS SESSSSSZSRZ SSI=SE=sS==sS

1 B-LNTH 1 750. 759 2. 750. 750.

B-PRI 1 1. 11 2. 11. 11.

BBLNTH 1 750. 750 2. 750. 750.

A BECHOPRI 1 11. 11 Q. 11, 11.

4 CHQGOVHD 1 28. 28 a. 28. 28.

b CHQHOVHD 1 10. 18 °. 10, 10.

‘ CHQLNTH 1 750. 750 9. 750. 750.

g CHQPRI 1 1. 11 2. 11. 11.

GRUNTH 1 10@e0. 10029 2. 10000 . 10000 .

f 1 200 . 200 2. 200. 200.

1 11. 11 2. 11. 11.

1 8300. 6300 2. 8300. 8300.

1 200 . 200 2. 200 . 200 .

1 11. 11 2. 11. 11.

1 208. 200 2. 200. 200.

1 11. 1 2. 11. 11.

HQLNTH 1 750. 750 2. 750. 752.

HQOVHD 1 8. 8 2. 8. 8.

HQPRI 1 1. 11 9. 11. 11.

RT.OVHD 818 8. 8 2. 8. 8.

v .ROUTER 1 0. 2 9. 2. 9.

HCLNTH

HCPRI
HCRLNTH
HQGGLNTH
HQGGPRI
HQHGLNTH
HQHGPRI

r

L;

Figure 11-7. Numeric Variable Report

11-9

LS
- PR N PRI R RN
PRSI S IR I I T A

ORI AR AR R A A R e S it v i e SR I e it A/ e m o oA ara s e gl

The report for Variables taking non-numeric values is illustrated in
figure 11-8 where the labeled columns have the following significance.

VARIABLE: The name of the Variable.

CURRENT TYPE: The type of entity or construct that the Variable is
set to at the end of the simulaticn.

CURRENT VALUE: The name of the entity or construct to which the .
Variable is set at the end of the simulation.,

NON-NUMERIC VARIABLES...

CURRENT CURRENT
VARIABLE TYPE VALUE

ACKSTB11 ALPHA $CORRECT
STATES13 ALPHA $CORRECT
STATES14 ALPHA $CIRREL™
STATED21 ALPHA $CIRRECT
STATED22 ALPMA 3ERROR
STATE@23 ALPMA SCORRECT
STATES24 ALPHA SCORRECT
STATE@31 ALPHA SERROR
STATE®32 ALPHA $CORRECT
STATE®33 ALPHA $CORRECT
STATE®34 ALPHA $SCORRECT
STATES41 ALPHA SCORRECT
STATE@42 ALPHA $CORRECT
STATES43 ALPHA SCORRECT
STATEG44 ALPHA SCORRECT
STATESS1 ALPHA SERROR
STATE®52 ALPHA $ERRCOR
STATESS3 ALPHA SERROR
STATEQS4 ALPHA SERROR
STATEDS1 ALPHA SERROR
STATE®82 ALPHA SERROR
STATE@E3 ALPHA SERROR
STATEQGB4 ALPHA SERROR
STATEBT1 ALPHA SCORRECT
STATES72 ALPHA SCORRECT
STATE®73 ALPHA $CORRECT
STATEQ74 ALPHA SCORRECT .
VAR RESOURCE CPU

Figure 11-8. Non-numeric Variable Report

DRI/ S St Rk ol San A8 3 - ti

Lan aa an oa o

11.2.3 1Item Report

Figure 11-9 illustrates the Item Report, where the labeled columns have
the following significance.

ITEM NAME: The name of the Item.

NUMBER CREATED: The number of instances of this Item that have been
created with the CREATE or SEND Primitives over the
simulation.

NUMBER DESTR'D: The number of instances of this Item that have been
destroyed with the DESTROY Primitive over the
simulation.

TIME IN SYSTEM

MINIMUM: The minimum time any instance of the Item
was in the system,

TIME IN SYSTEM

MAXIMUM: The maximum time any instance of the Item
was in the system,

TIME IN SYSTEM

AVERAGE: The average time any instance of the Item
was in the system,

STD DEV: The standard deviation in the times the
Item spent in the system.

TIME IN SYSTEM

MINIMUM, MAXIMUM, AVERAGE, STD DEV are based on the individual Item
instances' time in the system. This statistic is calculated whenever an
Item instance is destroyed (with the DESTROY Primitive) and is equal to
the time of destruction minus the time of creation (with the CREATE or
SEND Primitive). Therefore, Items in the system that have not been
destroyed at simulation end will not be reflected in these statistics.

SIMULATION TIME = 3241 .30060 UNITS

ITEM REPORT

ITEM NUMBER NUMBER TIME IN SYSTEM

NAME CREATED DESTR'D WMINIWMUM... VAXIMUM... AVERAGE... STD DEV.. .
STS2IIT ZSTIIITT S===SsS==T o= s=== =
RFT1MSG 87 45 89.09 1815.92 557.82 232.58
RFT2VSG 54 37 S2.47 1030 .96 854 .91 253.97
RFT3MSG) 4l 1068.29 1024 .44 644 .82 237.49
RFT4MSG 51 33 189.87 1055.10 658.14 238.19
RFTSMSG 52 39 180 .34 964 .18 812.76 231.33

Figure 11-9, Item Report

11.2.4 Resource Report

This report gives statistics on each Resource's presence in the idle
state, busy queue, and inactive state as well as the number of Processes
put into a wait queue for the Resource. These queues are discussed in
detail in the section on systam defined queues (see section 3.5). Four
kinds of statistics are kept on the busy and wait queues: (1) entities
put into the queve (INTO), (2) entities taken out of a queue (OUT OF), (3)
the number in the queue (#), and (4) the time entities spent in the queue
(TIME). Statistics on the number in the state are kept for the idle and
inactive states.

An exampie of the Resource Report on these states and queues is shown in
figure 11-10, For each row of each queue or state the numbers have the
following significance.

The TOTAL NUMBER of the INTO and OUT OF rows indicate the number of
entities that were, respectively, placed in or taken out of the queue.

The CURRENT # is the number of entities in the queue or state at the time
the simulation run was completed.

The MEAN # is the time weighted average of the number of entities in the
queue or state over the simulation.

The STD DEV # is the standard deviation in the number of entities in the
queue or state over the simulation.

The MINIMUM # is the minimum number of entities in the queue or state at
one time over the simulation.

The MAXIMUM # is the maximum number of entities in the queue or state at
one time over the simulation.

The MEAN TIME is the average time entities spent on the queue.

The STD DEV TIME is the standard deviation in the time that the ent1t1es
spent on queue.

The MINIMUM TIME is the minimun time any entity was in the queue.
The MAXIMUM TIME is the maximum time any entity was in the queue.

The REQUEST TIME statistics provide the mean, standard deviation, minimum
and maximum of the time it took for the request for each unit of the
Resource to be satisfied. I.e., the request time is the difference
between the time an allocate request is made and the time the Resource
unit is placed in the busy queue.

The field labeled "CURRENTLY ALLOCATED TO PROCESSES:" provides a list of

the Processes whose task instances had allocated the Resource at
simulation end.

r SIMULATION TIME =

The field labeled "PROCESSES CURRENTLY WAITING:" provides a list of the

Process task instances which were suspended while waiting for the Resource
at the end of the simulation.

7500000 . UNITS
RESOURCE REPORT
TOTAL
RESOURCE NUMBER CURRENT... MEAN...... STD DEV... MINIMUM... MAXIMUM...
81 .
IDLE 1. .941 .236 Q. 1.
REQUEST TIME 577.941 2431.301 9. 14013.
INTO BUSY 34
OUT OF BUSY 34
BUSY 9. .959 .238 0. 1.
BUSY TIME 13058.826 17383.984 1600. 50400.063
INACTIVE 2. 2. 9. 9. 9.
INTO WAIT 34
OUT OF WAIT 34
WAITING 9. .03 .051 0. 1.
WAIT TIME 577.938 2431.295 8. 14013.

CURRENTLY ALLOCATED
TO PROCESSES: NONE

PROCESSES CURRENTLY
WAITING: NONE

Figure 11-10.

Resource Report

g W W e LA I g B e e e "y

11.2.5 Action Report

The Action Report provides the user with statistics on the time consumed
by each Action. Statistics are gathered on two aspects of such time
consumption, called "useful time" and "delay time".

"Useful time" is equal to the amount of time the Action was being
executed, whereas "delay time" is the time between the initiation and
campletion of an Action during which the execution of the Action (i.e.,
the Process in which it appears) is suspended. Both useful time and delay
time are calculated only upon the campletion of the Action. Therefore,
Actions which are active at the end of the simulation are not included in
these statistics.

A sample Action Report is shown in figure 11-11. The name immediately
below the ACTION heading is the user-defined name of the Action. For the
row labeled USEFUL TIME the statistics have the following significance:

TOTAL SAMPLES: the number of times the useful time was calculated
(i.e., the number of times the Action was completed).

MEAN: The average useful time of this Action over the simulation
(i.e., the total time taken by the Action divided by TOTAL SAMPLES).

STD DEV: The standard deviation in the useful times.

MINIMUM: The minimum time taken in the execution of the Action over
the simulation.

MAXIMUM: The maximum time taken in the execution of the Action over
the simulation.

% TIME OF TOTAL: The percent of the total simulation time for which
this Action was executing. Since AISIM allows for the parallel
execution of the same Action, this figure can be greater than 100.

The figures in the row labeled DELAY TIME have the following significance.

TOTAL SAMPLES: The number of times the delay time was calculated
(i.e., the number of times the Action was completed),

This will always be equal to the TOTAL SAMPLES of
USEFUL TIME.

MEAN: The average time the Action was delayed during
execution over the simulation (i.e., the total time
taken up in delay divided by TOTAL SAMPLES).

STD DEV: The standard deviation in the delay times over the
simulation.

MINIMUM: The minimum delay time of an Action over the
simulation,

MAXIMUM: The maximum delay time of an Action over the
simulation.,

11-14

e o CARCHANA A A ol i s A4 5o) ‘."I"‘l'h"i"ﬁ'.'}

. -

L La n an an a4 o

Note that % OF TOTAL is not calculated for the delay time.

SIMULATION TIME = 7500090. UNITS
ACTION REPORT _
TOTAL % TIME
ACTION SAMPLES MEAN..... STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.
CHQGD . OH
USEFUL TIME 51 199803.923 89251.581 62999.969 280000.063 74.6687
DELAY TIME s1 2. 2. 9. 2.
TOTAL % TIME
ACTION SAMPLES MEAN..... STD DEV... MINIMUM.. WMAXIMUM... OF TOTAL.
HQ.OH
USEFUL TIME 78 8000. 2. 8000 . 6000 . 6.240
DELAY TIME 78 153.848 1349.995 e. 12000.
TOTAL ' % TIME
ACTION SAMPLES MEAN..... STD DEV... MINIMUM.. MAXIMUM... OF TOTAL.
ROUTE . OH TTTTTTTT TTTTTTTTT TTmmmmmmmm mmmmmmmmme
USEFUL TIME 811 14601.233 21302.749 1599.989 80000. 157.888
DELAY TIME 811 a. a. 2. 0.
TOTAL % TIME
ACTION SAMPLES WMEAN. STD DEV... MINIMUM.. WMAXIMUM... OF TOTAL.
XFER .OH
USEFUL TIME 639 $50953.905 B82729.325 700. 417000. 434.127
DELAY TIME 839 2. 9. 2. o.
Figure 11-11. Action Report
11-15
RN .:_‘.‘..-'_..:\ :‘... .':"-'.'.'_‘~',’-';'-':'.‘:'.':'. -__.'_..‘\.-_'.'_..'_‘.- ..‘ ._ ‘ - ~_."'.:_ RS . c e "..
WAL N G e Ty Y, -, \;—i“ o h’ > . I..i "l ". "l ". "l D '.| ". PR ALY -'A';l".-x' AN .l'\.v.'AL':A' .

11.2.6 Queue Report

The Queue Report provides statistics on the utilization of user defined
Queues. The report contains information both on the number of entities
stored on the Queue as well as information on the impact the utilization
of the Queue had on Process execution and suspension. A sample Queue
Report is shown in figure 11-12, The rows labeled FILED ON, REMOVED FROM,
IN QUEUE and TIME IN QUEUE key statistics on the manipulation of the
Queue itself. The rows labeled TASKS BLOCKED, TASKS RESUMED, # BEING
BLOCKED, TIME BLOCKED refer to statistics on Process tasks that have been

suspended because they attempted to file an entity on a Queue that was
full (i.e., whose maximum number had been exceeded.)

The statistics in each category have the following significance.

The TOTAL NUMBER/FILED ON is the number of entities that have been
filed on the Queuwe over the whole simulation.

The TOTAL NUMBER/REMOVED FROM is the number of entities that have
been removed from the Queue over the simulation.

The CURRENT/# IN QUEUE is the number of entities on the Queue at the
time of simulation end.

The MEAN/# IN QUEUE is the time weighted average of the number of
entities on the Queue over the simulation.

The STD DEV/# IN QUEUE is the standard deviation in the number of
entities on the Queue over the simulation.

The MINIMUM/# IN QUEUE is the minimum number of entities on the Queue

at any time during the simulation {this statistic is always zero
since the Queue will be empty at the start of the simulation).

The MAXIMUM/# IN QUEUE is the maximum number of entities residing on
the Queue at any time during the simulation.

The MEAN/TIME IN QUEUE is the average time entities spent on the
Queuve.

The STD DEV/TIME IN QUEUE is the standard deviation of the in times
entities spent on the Queue.

The MINIMUM/TIME IN QUEUE is the least amount of time any entity
spent on the Queue.

The MAXIMUM/TIME IN QUEUE is the greatest amount of time any entity
spent on the Queue.

The statistics on the blocking of tasks due to the filling of Queues have
the following significance.

The TOTAL NUMBER/TASKS BLOCK is the number of Process tasks that were
suspended over the simulation due to Queue blocking.

11-16

EA I B SRR A BB A A e secnch 2

The TOTAL NUMBER/TASKS RESUMEDC is the number of Process tasks resumed
after having been blocked due to the filling of a Queue.

The CURRENT/# BEING BLOCKED is the number of Process tasks blocked at
the time of simulation end,

The MEAN/# BEING BLOCKED is the average of the number of Process
tasks being blocked over the simulation.

The STD DEV/# BEING BLOCKED is the standard deviation in the number
of tasks being blocked over the simulation.

The MINIMUM/# BEING BLOCKED is the fewest number of Process tasks
blocked at any time during the simulation.

The MAXIMUM/# BEING BLOCKED is the greatest number of Process tasks
blocked at any time during the simulation.

The MEAN/TIME BLOCKED is the average of the times Process tasks were
blocked during the simulation.

The STD DEV/TIME BLOCKED is the standard deviation in the times
Process tasks were blocked during the simulation.

The MINIMUM/TIME BLOCKED is the least amount of time a Process' task
was blocked during the simulation.

The MAXIMUM/TIME BLOCKED is the greatest amount of time a Process
task was blocked during the simulation.

QUEUE REPORT

TOTAL
QUEUE NUMBER CURRENT... VEAN...... STD DEV... VINIMUM... MAXIMUM...
2 =_E=TETS ZTITI=TIST=|E I
CONTROLQ
FILED ON 273
REMOVED FROM 273
IN QUELE Q. 4.569 3.477 9. 13.000
TIME IN QUEVE 54.237 30.6819 8.099 102 800
TASKS BLOCKED 2
TASKS RESUMED]
BEING BLOCKED 0. 9. 9. 9. e.
TIME BLOCKED a. 9. 9. @.

Figure 11-12. Queue Report

11-17

T Ty ¥ S R R T T e e T

s, 4, 4,

PRI RS |

11.2.7 Process Report

This report gives information on all aspects of Process executions. As

mentioned before, Processes contend for Resources and many times must wait

for another Process to camplete before the current Process campletes.

N Times spent in these states as well as other important data are recorded
automatically for the user.

The Process Report provides the following statistics: -

1) TOTAL SAMPLES - the number of times the Process was initiated,
the total (overall Process instances) number of times the Process
waited for another Process to complete and for required Resources .
to become available.

2) The sum total of time spent in all executions of this Process,
sun total of waits on Processes and also Resources.

;: 3) The mean time required for execution of the Process, for waiting
‘ on Processes, for waiting on Resources.

o 4) The standard deviation of time the Process required for
3 execution, for waiting on Processes, for waiting on Resources.

5} The minimum time required for Process execution, minimum time
spent waiting for other Processes, minimum time spent waiting for

Resources.

. 6) The maximum time required for Process execution, maximum time

- spent waiting for other Processes, maximum time spent waiting for
Resources.

7) Total number of times this Process was scheduled to execute.

- 8) The number of times this Process was scheduled to execute by a
Load or Scenario.

9) The number of times this Process was scheduled to execute due to
- a call fram another Process.

10) The total number of times this Process completed execution.

11) The total number of times this Process did not camplete
eszcution.

12) Total number of times the execution of this Process was suspended
during execution.

13) Names of Items used in this Process.
14) Number of each Itam created by this Process.

; 15) Number of each Item passed to this Process via the SEND

11-18

16)

17)
18)
19)
20)
21)
22)
23)
24)
25)
26)

27)

28)

Number of each Item passed out of this Process via the SEND

Primitive.

Number of each Item destroyed by this Process.

Total number of each Item used in this Process.

Mean time each Item was held by this Process.

Minimun time an Item was held by this Process.

Maximum time an Item was held by this Process.

Standard deviation of time an Item was held by this Process.
Verbal description of the Process.

How many times each Primitive in the Process was executed.
Any entry Primitives and their names.

Names of other Primitives in this Process.

Any parameters or Items associated with each Primitive in the
Process.

Any comment associated with each Primitive in the Process.

An example of a Process Report is shown in figure 11-13.

LI St i s it e ek 2l e

| N A A AP A T Nt A

ST e
L PR
ACE AT N

LA Rt AR S it A I Juintie W Cal A R et A e St A At SN T TN TN N
TOoTAL
PROCESS SAMPLES SuMm . MEAN . STD DEV. .. MINIMUM MA X [MUM
s T2 -3 2TTITTTETZTE LIE 2 2 - T - g 22T T T =2 S x="=zerzxrrz==% IEEES N ER N RN} srdesaeITX=T g~ gsTE€ET~ =TT
TRANSMIT
TOTAL 194 121608 022 626 845 216331 178 875 968 625
PROCESS wAlTY 0 (o} 0. 0. 0. (e}
RESOURCE waAalY o (¢} 0. 0. O. o.
TOYAL » & AUTO 4 CALL ¥ OF # NOT ¥ TIMES

SCHEDULE SCHEDULE SCHEDULE COMPLETE COMPLETE SUSPEND

279] 279 272 7 o
ITEM CREATED RECEIVED SENT DESTR'D
fTESREOEED [Z A AR ENE] aseseess LER RN NN R LA N2 XN NN]
RFT IMSG 0 o] o 51
RFT2MSG [o} o] [o] 8
RF TIMSG o] (o) o 47
RFTAMSG [o] o 0 Sa4
RFTSMSG [¢] o] o} 60
PROCESS HOLDING TIME
1TEM # SMPLS MEAN. . MINIMUM . MAX T MUM STD DEv
EERETEREN *EeTIWZ=SS T EEERTXEES [E RS EERERE R] (2 A RN AR YN SeEEESRCrTZETa
RF T IMSG 51 6 7 0. 33 7S 8. 18
RFT2MSG 61 17 37 0 40 50 11 23
RFT3IMSG 47 26 57 (o] 47 2% 10 82
RF T4MSG 54 41 62 13 S0 67 SO 1] a8
RF15MSG 60 54 11 27 00 81 00 14 08
PROCESS DESCRIPTION
LA AR R B BN] I E A A ES RN} 9P ®TAS TSN AR TITIESTgSsEY ST EUSERNESSTNORVERTOraYSGSRGREREREEE
TRANSMI T TRANSMIT THE MESSAGES
COUNT ENTRY OPCODE PARM PARM PARM COMMENT
LR E 3 4 SEEYSESEES as=-=z3z2 ST ESESETR s E Y saEY aARERERS TS ES USSP NREERES X RERTENERES
279 STARTY NO
279 GIVEN LMSG MSGLGTH TIME
279 MTY I ME CONSTANT TIME WAIT FOR MY SLOTS Y0 ARIVE
273 DESTROY LMSG STOP TIME IN SYSTEM CLOCK
273 MTUSE CONSTANT 3] 375 WAIT TILL MIDDLE OF MTSLOT
272 EvaL TSLOTUSD ADD CREDIT USE QF FIRST M1S5.07
272 TSLOTUSD 1
272 NEWSLOT ENTRY
272 EVAL MSGLGTH SuBTRaACTY CREDIT TRANS OF AN MTSLOT
272 MSGLGTH 1
272 COMPARE MSGLGTH EQ TRANSMISSION FINISHED?
272 (o} END
o] MTUSE CONSTANT 6 75 WAIT TILL MIDDLE OF MTSLOT
[o] EvaL TSLOTUSD aDD
o] TSLOTUSD 1
o] BRANCH NEWSLOY 100
272 END ENTRY
272 ENO

Figure 11-13. Process Report

s st vl AR RJUER Bt

Y R R Ty m L St e A St e S e S e B At S SLIA G e S S et B ekt

11.3 COMMANDS RELEVANT TO VIEWING OUTPUT REPORTS

To view output reports of simulation runs of a model from the AISIM READY
level, one uses the EDIT command.

Since the output report is too long to fit on a terminal screen, to view

it all, one must use some text editing commands. Below is a brief review
of the commands that are most useful for this purpose. (This discussion

refers to the VAX/VMS EDT text editor).

Note: In the following commands "." represents the current line in the
file.

11.3.1 TOP, BOTTOM

To orient the screen to either the top or bottom of the report one should
enter one of these two camards.

TYPE BEGIN
TYPE END

11.3.2 UP, DOWN

To move the report either up or down on the screen n lines issue the
command,

TYPE .-n
or

TYPE .+n
and the line n lines up or down from the current one will be printed.
11.3.3 FIND

To find a certain sequence of characters, sequence, enter the characters
between delimiting single quotes.

TYPE 'SEQUENCE'

and the screen will print the nearest line down in the text containing the
characters sequence.

11-21

. P AR s i A St M 3 o
{ BidCi R T T ORIy a——w—"~"

R Ty

11.3.4 LIST

To print n consecutive lines down from the one to which one is currently
oriented, issues the command,

TYPE .:.+n

and the next n lines will be displayed on the screen.

11-22

LI et A it Al iy

Ty

!

ol PV S B S A i e ae > - hoinih i el Amdh ‘0 30

T -
g 7YY -vvﬁ-..ww—v}.._

APPENDIX A

OPERATIONAL PROCEDURES AND IMPORTANT INFORMATION

A.1 IMPORTANCE OF DATABASE BACKUP AND ALLOCATION

Processes and the other model entities are stored on disk as they are
input to AISIM. Changes and additions made to this information are
reflected in the current version of the database on disk. It is possible
for this database to be damaged if the camputer system fails or if the
input session is abnormally temminated while a change or addition is being
made so that it is unusable. In addition, errors made in inputting may
make the stored information nonsensical if they are severe enough. For
these reasons, the BACKUP command is provided.

It is wise to periodically create a backup copy of the database with the
AISIM READY level cammand "BACKUP". Should a database be damaged, it may
be recreated fram the last BACKUP copy by using the "RESTCRE" command.

A.2 ABNORMAL TERMINATION OF A DUI OR AUI SESSION

To terminate a DUI or AUI session normally the user must enter the cammand
END. 1If the user becames entwined in a situation which disallows normal
system operation, the following procedures should be followed:

It should be noted that while in a DUI session, only the data entered
prior to the last SAVE command will remain intact after this procedure is
executed. Tf the system appears to malfunction, caution should be used in
issuing a SAVE command. 1If the database is the source of the malfunction
and a SAVE camand is issued, the user might destroy the entire database.
It is better to lose one session's data (by not saving) than to destroy an
entire database.

If the user is on an HP terminal, strike the TERMINAL RESET key until
the message "TERMINAL READY" appears in the upper left hand corner of
the screen; two strikes in a one-second period are required.

Then on any terminal, type the cntl (control) key and the C key
simul taneously.

If no response to these procedures is seen, the user should disconnect the
modem, and try to log in and reinitiate AISIM.

If the system responds by displaying "S$" the user should reinvoke AISIM.

A-1

A.3 AISIM PLOTS

The following section is intended to describe in detail how the simulation

plot results produced by the AISIM Analysis function are generated. This
discussion addresses the implementation of the plot function in AISIM with

respect to the physical characteristics of the temminal display and the

driving software. For a user of AISIM, it is generally not necessary to

be aware of implementation specific details. This section has been

included because the plot output from AISIM simulation runs is the most -
visible form of output produced. This data may appear to contradict other

results produced by the AISIM Analyze function (output listing

statistics). This explanation is intended to describe how this function

works so that the AISIM user can explain apparent anomalies. .

AISIM produces plotted data for many statistics. The plots represent
"instantaneous" output from the simulation because in all cases, a defined
statistic is plotted against time (the y-axis is the statistic value, the
x-axis is the simulation clock). Time is nommally considered to be
continuous; therefore, it is "reasonable" to assume that AISIM plots are
continuous. In reality, this is not the case. AISIM plots are produced
by sampling statistics at discrete intervals during the simulation. Each
sample defines a point on the plot. A couple of relationships need to be
known to understand how this sampling technique produces plots.

The first relationship a user must be aware of is the resolution of the
display screen. The terminal graphics terminals have a raster scan
display. A raster is the smallest addressable unit which can be
illuminated on the screen. Within the AISIM plot axis there are a fixed
number of rasters along the x-axis (700 for the HP terminals, 500 for
TEK4105, and 1024 for Vrl00). What this implies is that up to a fixed
number of points can be plotted along the x-axis without exceeding the
hardware limitations of the display. When an AISIM user specified a

plot be displayed which has more than a fixed number of points, the AISIM
software reduces the data sent to the terminal so that it can be
displayed. This data reduction has the effect of "ignoring" some points.
When points are ignored, the obvious result is that the plots lose
accuracy. This can account for discrepancies between the plotted data and
the simulation summary results, specifically with respect to the minimum
and maximum statistics. The simulation report may indicate that a
Resource queue had a maximum length of 100 when a plot of the current

nunber in wait for a Resource over time indicates only a maximum value of
80.

Another problem which can occur with respect to plotting is that the plot
sampling can miss activity occurring in the simulation because the sample
interval is too long. The following default relationship is embedded in
the AISIM software. One hundred data points are sampled for each period
in the Scenario definition of a simulation run.

Y

What this implies is that if a Scenario is defined to have only one
period, only one hundred plot samples will be collected. The sample
interval is calculated as the period length/100.0. Suppose the period
length is defined to be 3000 units (where units are seconds, this is 1
hour). Plot samples are collected every 36 units (or 36 seconds). If

A-2

Ve T e . CRERY . - P e
.. LS C e e e e R

PR I e R T P . Co -
A WL W R PRI S SRR A SetL sty e Lt M N

(AR hc i - SAe e i I/ doe A e IR ERARA AR A6 AA B4 Aot Aot s B §

activity occurs in the model over time intervals less that 36 units, this
data will not be captured for plotting. This could occur if a user wanted
to see a plot of disk utilization of a camputer system over a one-hour
time frame. Since disk operations occur in seconds or less, a plot of the
current number busy of the Resource disk would miss most of the data
points if samples were taken every 36 seconds.

It is possible to adjust the plot sampling interval in the Scenario
definition. The number of samples collected for each plot is computed as
the number of periods in the Scenario multiplied by 100 points.

To reiterate, AISIM plots produce graphs of statistics collected during a
simulation run, and display the results over time. The data for these
plots is collected by sampling discrete intervals. It is not generated by
state changes detected by the simulator. Therefore, the "instantaneous"
plots of "CURRENT" data over time can disagree with accumulated statistics
in the simulation listing.

A.4 PRODUCING HARDCOPIES OF THE TERMINAL DISPLAY

In addition to producing hardcopies of the Process flowcharts, the HP2631G
Graphics Printer, the TEK4695 copier, or the HP2623 internal printer can

be used to produce hardcopies of the architecture, plots, or Process
diagrams.

The user is warned especially against copying forms on the TEK410S
terminal since this action will empty the ink wells on the TEK4695 copier.
The interfaces on a TEK4105 terminal define the screen to be a dark blue

color, so attempts to copy the forms screen will cause a page full of blue
ink.

To produce hardcopies of the terminal display of an HP2647A terminal, the
following must be in effect:

1) An HP2631G Graphics Printer must be connected to the HP2647A
Graphics Terminal with the HP-IB camunications bus.

2) The HP-IB bus address of the printer must be set to one.

3) The printer must be set to ON LINE mode.

To transfer the display information to the printer, the user first presses
the <COMMAND> key. This places the temminal in "cammand mode".

To transfer text (e.g., Plot titles, LISTVAL responses), the user then

presses the following keys in succession: <F1> <F1> <F3> <F3> <F3> D
<1> <RETURN>.

To transfer graphics (e.g., Architecture displays, plots), the user

presses the following keys in succession: <F1> <F1> <F3> <F3> <Fé> <F>
<1> <RETURND>,

........................ e T e T T e
o e T e) "- S T e N L,
LR A.A__LA PRCPICWRRIPERP PP, P A0 W PR

.......

NOTE: Any text preceeding the cursor position will not be transferred.
Thus, the user should be sure the cursor is placed in the proper position
before placing the terminal in “command mode".

when the transfer process is camplete, the user exits the "command mode"
by once again pressing the <COMMAND> key.

If the user is on a TEK4105 terminal equipped with a TEK4695 printer, the
SCOPY button will copy any data on the screen fram the temminal to the -
printer.

The user can print the smaller size copies by using the following
procedure before the copy is made: 4

1. Press the SETUP key (an asterisk should appear).
2. Type HCSIZE 1

2, Press the SETUP key again

4. Perform the copy

The terminal can be reset for normal copy size by following the above
procedure and typing a zero instead of a one in line 2.

If the user is on a HP2623 terminal, the following keys will cause any

data on the screen to be copied to the internal printer: w
<modes> - display terminal modes
<{remote> - set terminal off line
<enter key> - perform copy
{remote> - set terminal back on line

A.5 EXECUTING SIMULATION RUNS AS BATCH JOBS
Once a developed model has been translated, it is not necessary to execute
simulation runs interactively. They may be executed as batch jobs. The
advantages of the batch methed are:
1) The user does not have to remain at the terminal through out the
AISIM session. All necessary job informmation is specified up
front and the system takes charge.

2) It is not necessary to use a graphics terminal. Any temminal
connected to the VAX will suffice.

3) Multiple simulation runs can execute concurrently.
4) Simulation runs can be deferred to execute during off-peak hours.

To set up a batch execution, the user types "BATCH" at the AISIM READY
level, The system then prampts the user for the following information.

.:-".'..'_ .‘.-'.'_':_'.~_'.-_'_—.'_-. ..;_..-_.;...-_.;'.;_._'_..'_. e et e
¥ A B T g S Py, I S AR T P T P s

.......

ENTER NAME OF PROJECT (1-8 char): the name of the project to be used.
DO YOU WISH TO TRANSLATE THE MODEL? yes or no based on the user's choice.

ENTER COMMANDS FOR AISIM RUN (<CR> TO END)
>

Enter cammands for AISIM run. Allowable AUI commands are CANBREAK,
DELETE, EDIT, END, GET DEF, GO, INFRES and SAVE.

Commands are typed c;ne per line, in the order they are to be acted upon.
Camands must be typed in the correct format. The GO and END cammands are
mandatory. All other cammands are optional.

After the above processing is completed, a file called SUBBATCH.COM will
have been created. This file can then be submitted to an appropriate
batch queve with any other information such as at what time the job should
run (see VAX SUBMIT camnand for available parameters). If no extra
information is necessary, the following cammand will submit the AISIM job
to the default batch queue to be run immediately:

SUBMIT SUBBATCH.COM

Figures A-l and A-2 show sample batch run setups.

D A i et gl Sl il any "

Sample Batch Job Submission

A-1.

Figure

on with Plots

1881

Sample Batch Job Subm

Figure A-2,

A-7

R P e S Sl e

~~~~~
......

DA A annat “aved - aiee- od —d
Ay Ay . RSN S A e e man a0y

A.6 RANDOMNESS IN RESULTS

There are ten random number streams available for use by the functions
producing the random results associated with Loads, probabilistic
branching (with the PROB Primitive), and Action durations,

For the Load entity, the randam number stream is used by the probability
functions that determine the time between Process triggerings. For the
PROB Primitive, the randam number stream is used in evaluating whether or
not execution should branch to the given point. For the ACTION Primitive,
the randam number stream is used by the probability functions that
determine the duration of an Action.

The user may select the random number stream used by each of these three
functions using the EDIT command (see section 7.4) in the AUI. The
default values are one, two, three, for Loads, PROB Primitives, and ACTION
Primitives, respectively. The current stream assignments can be displayed
with the LISTVAL camand (see section 7.11) in the AUI.

When simulating a system, the user needs to have a sufficient number of
observations to analyze in order to draw valid conclusions. It is
sametimes desirable to execute additional simulation runs with the same
conditions to obtain additional observations. To do this, the randam
number streams should be changed for each additional run. Otherwise, the
results will not change.

et et e




e

i.:._.

W N W T T T T P

APPENDIX B

AISIM ERRORS

If there are errors detected during the initialization, an error message
will be written below the invalid entry. Following is a list of the
initialization error messages and their causes.

#### ERROR -~ VALUE MUST BE NUMERIC

A non-numeric value was found as the value of a Constant. The
defined value of a Constant must be numeric.

###4 ERROR ~ TABLE ENTRIES MUST BE NUMERIC

A non-numeric value was found as an entry in a D or C type Table.
All D or C type Table entries must be numeric.

4444 ERROR - ALPHA TABLE X ENTRY IS ILLEGAL TYPE
In an alpha Table, an x entry was a Keyword or other invalid entry.
The only valid entries are references to Actions, Items, Processes,
Queuves, Resources, or Tables.

###4 ERROR - ALPHA TABLE Y ENTRY IS ILLEGAL TYPE

In an alpha Table, a y entry was a Keyword or other invalid entry.
The only valid entries are references to Actions, Items, Processes,
Queuves, Resources, or Tables.

#3444 ERROR - VARIABLE INITIALIZED TO ILLEGAL TYPE
A Keyword or other illegal type was found as the value of a variable.
Variables must be initialized to Actions, Processes, Queues,
Resources, Tables, Alpha Literals, or numerics.

#444 ERROR - ATTRIBUTE DEFINED MORE THAN ONCE

An Item, Process, or Resource attribute was defined more than once.
The duplicate attribute definition should be removed.

#### ERROR - #***#x%*x%x NOT DEFINED AS A GLOBAL CONSTANT

A non-numeric value in the size field of a QUEUE was not defined as a
global Constant. A non-numeric value for the size must either be the
word "INFINITE" or be a previously defined global Constant.

R R P Oy ~.',' e e e e N N T T e e T ) IROAN .
e e e e e I e T e S

.
AR TR I A I W W, WA TP S AT S _.}3-74-\‘~ S _.";_. .L\_IU A .L\J.h\

————r—

Pl




#i4s

#H44

#isd

h44

i

4

gand

......

-------

R W

A non-numeric value in the total or initial units field of a Resource
was not defined as a global Constant. The total and initial units of
a Resource must each be either a numeric value or be a previously
defined global Constant.

In the definition of a Scenario, a non-numeric value in the schedule
field was not defined as a global Constant. The schedule must be a
numeric value or a defined Constant.

In the definition of a Scenario, a non-numeric value in the priority

field was not defined as a global Constant. The priority must be a
numeric value or a defined Constant,

ERROR - INITIAL # OF RESOURCE UNITS IS GREATER THAN TOTAL # OF UNITS
In a Resource definition, the initial number of units defined was

greater than the total number of units of that Resource which were to
be made available.

ERROR - FROM NODE IS MOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the FROM
NODE column was not the name of a defined Resource.

ERROR - TO NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the TO
NODE column was not the name of a defined Resource.

ERROR - NEXT NODE IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the node specified in the NEXT
NODE column was not the name of a defined Resource.

ERROR - LINK IS NOT DEFINED AS A RESOURCE

In an entry in the Legal Path Table, the link specified in the VIA
LINK colunn was not the name of a defined Resource.

ERROR - LABEL MUST START IN COLUMN 1 OR OPCODE MUST START IN COLUMN
10

In a Process definition, a value was encountered which did not start
in column 1 or in colum 10. If the value is a label, it must start
in column 1, or if it is an opcode, it must start in column 10.

ERROR - OPCODE MUST START IN COLUMN 10

In a process definition, a non-label value was encountered which did
not start in colum 10. All opcodes must start in column 10.

B-2

........... - -
______________ ‘~_\‘.

R « e
. e . B -
------ e V.

a T .t Ay, LAY

........

M AR At o |




R R W gy T T g e T rEs e R Aee mn Rt e S St Aadi S S Al A Bl g S dr B8 oo i fha

#44# ERROR - ****x*xx NODE NAME IS NOT RECONIZED AS A RESOURCE
An invalid value was encountered in the node field of a Process
definition. This field must be blank, contain the word "ALL", or
contain a value which resolves to the name of a defined Resource.

#444 ERROR - *****%x* yAME IN GIVENS LIST IS IN ERROR IN THIS CONTEXT

o aa an am an am

#444 GLOBAL NAMES, NUMBERS AND CLOCK CANNOT BE GIVEN

3 The value of a given parameter for the START figure of a Process was
) either a numeric value or the CLOCK. Numeric values and the CLOCK
cannot be used as given parameters in a Process.

###4 ERROR — ******** TTEM IN RECEIVES LIST IS IN ERROR

This is a general message indicating an error in a START figure of
type "ITEM" of a Process. This message is generally followed by one
of the two following messages which more specifically describe the
error.

vy

v

4444 ERROR - ITEM APPEARS TWICE IN RECEIVES LIST

In the definition of a START Primitive of type "Item," an Item was
listed more than once. An Item should only occur once in the
receives list of the START Primitive.

8444 ERROR - REFERENCE IN RECEIVES LIST IS NOT DEFINED AS AN ITEM

In the definition of a START Primitive of type "ITEM," a value which
was listed in the receives list was not defined as an Item. A
Process with an ITEM START can only receive Items,

#8444 ERROR - **%****% NUMERIC REFERENCE IN CALL PROCESS FIELD

In the definition of a CALL Primitive in a Process, the process name
field contained a numeric value or a keyword. This field must
contain the name of a defined Process to be initiated.

#4#% ERROR - RETURN PARAMETERS NOT ALLCOWED FOR CALL NOWAIT OR BLOCK

In the definition of a CALL Primitive in a Process, return parameters
were defined, but the CALL option was defined as NOWAIT or BLOCK.
Only Processes called with a WAIT option can return parameters.

#4844 FRROR - #**#*#*a+%%* NUMERIC OR GLOBAL MAY NOT BE USED AS RETURN
In the definition of a CALL Primitive in a Process, a numeric value,

keyword, or the CLOCK was defined as a return parameter. Numeric
values, keywords and the CLOCK cannot be used as return parameters.

B-3

B RPN te t .




Cad

S u A A S

S

e

44

Li21]

44

LE11)

has

A2

T N T T W S o PPy S

i -t B Saad aa seas B a0 -4

ERROR -~ BRANCH CONTINUATION DOES NOT FOLLOW A BRANCH STATEMENT

In the definition of a BRANCH Primitive of a Process, the label to
branch to was not given. A branch Primitive must include a label to
branch to.

ERROR - KEYWORD CANNOT BE USED IN PROB

In the definition of a probabilistic BRANCH Primitive of a Process,
CLOCK or a keyword was used as the probability of BRANCH., These
cannot be used as the BRANCH probability. Valid values for the
BRANCH probability are numeric values and local and global Variables
and Constants.

ERROR - #*¥##***%* CHRCK REFERENCE MUST BE RESOURCE OR QUEUE

In the definition of a TEST Primitive in a Process, the value to be
tested was defined as a numeric, a global Variable, or a global
Constant. The value to be tested must be a reference to either a
Resource or Queue.

ERROR - ****%%x%* NUMERIC REFERENCE INVALID IN RESOURCE FIELD

In the definition of a RESET Primitive in a Process, the value to be
reset was a reference to a numeric value. The value to be reset must
be a reference to a defined Resource whose allocation is to be
changed.

In the definition of an ALLOC Primitive in a process, the value in
the name field was a reference to a numeric value. The value in the
name field must be the name of a reference to a defined Resource
which is to be allocated.

In the definition of a DEALLOC Primitive in a Process, the value in
the name field was a reference to a numeric value, The value in the
name field must be the name of a reference to a defined Resource
which is to be deallocated.

ERROR ~ #*#***%#%* RFFERENCE INVALID IN ALLOCATION TYPE FIELD

In the definition of an ALLOC Primitive in a Process, the value in
the allocation type field was invalid. The valid entries are
"PARTIAL" and "ALL".

ERROR - BRANCH LABEL, ***###*#% NOT DEFINED IN OFD

In the definition of a Process, a BRANCH Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be BRANCHed to.

ERROR - LOOP LABEL ******** NOT DEFINED IN PROCESS

In the definition of a Process, a LOOP Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be branched to.




N R W W S o T T Y Ty~ greg vy

#444 ERROR ~ CHECK LABEL *****%** NOT DEFINED IN PROCESS

In the definition of a Process, a TEST Primitive referenced a label
for which there was no corresponding ENTRY label defined. An ENTRY
Primitive must be used to define the label to be branched to.

##44 ERROR ~ COMPARE LABEL ***#%%*%* NOT DEFINED IN PROCESS
In the definition of a Process, a COMPARE Primitive referenced a

{ label for which there was no corresponding ENTRY label defined. Aan
ENTRY Primitive must be used to define the label to be branched to.

$#3#44 ERROR - ******x*x AJRFADY DEFINED AS AN ENTRY NAME IN THIS PROCESS

In a Process definition, an ENTRY Primitive was defined twice with
the same label. A label can occur only once in a Process.

$##4 ERROR - '****%x*xx*! KEYWORD CANNOT BE ASSIGNED NEW VALUE

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a new value to a Keyword other than SCNODE. Only the
SCNODE keyword can be assigned a new value.

###44 ERROR - NUMERIC QUANTITY CANNOCT BE ASSIGNED A VALUE

In an ASSIGN Primitive of a Process, an attempt was made to assign a
new value to a numeric value. The only entities which can be
assigned a new value are attributes, Variables, and local variables.

##44 ERROR - ***%x**x** GIOBA[, CONSTANT CANNOT BE ASSIGNED A NEW VALUE

In the definition of an ASSIGN Primitive in a Process, an attempt was
made to assign a new value to a global Constant. The only entities

which can be assigned a new value are attributes, Variables, and
local variables.

$444 ERROR - '*****xax! _ NOT RECOGNIZED AS A LOGICAL RELATION

In the definition of a COMPARE Primitive in a Process, the relation
field was invalid. Valid relations are EQ, NE, GE, GT, LE, and LT.

##4# ERROR - '***%¥xk%' 15 NOT RECOGNIZED AS AN ARITHMETIC OPERATION OR A
LOCAL VARIABLE

In the definition of an EVAL Primitive in a Process, the function
specified was invalid. The function field can also contain the name
of a local variable which is a reference to a defined Table.

ERROR - '*##%%**xx' A GLOBAL CONSTANT NUMERIC OR KEYWORD CANNOT BE ASSIGNED
TO

In the definition of an EVAL Primitive in a Process, a global
Constant, numeric or a keyword was specified in the set variable

L e o am g




L e R . e e A S

g4

EAXE:

1333

4444

o " e -
R o T—" ey BRI Al el Sd sl el Rm g A A0 8 4 g

field. The only entities which can be assigned a new value by an
EVAL are global Variables and local variables.

FRROR - #****x%xxx NUMFRIC REFERENCE INVALID IN PROCESS FIELD

In the definition of a SEND Primitive in a Process, the Process field
contained a numeric reference. The Process field must contain a
reference of a defined Process.

ERROR - *#*x*x%** REFERENCE INVALID IN ITEM FIELD

In the definition of a SEND Primitive in a Process, the list of Items
to be sent to a Process contained an invalid value. Only Items can
be sent to a Process.

In the definition of a CREATE Primitive in a Process, the list of
Items to be created included an invalid value. Only Items can be
created by a CREATE Primitive.

In the definition of a DESTROY Primitive in a Process, the list of
Items to be destroyed included an invalid value. Only Items can be
destroyed by a DESTROY Primitive.

In the definition of a FILE Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a reference to a defined Tteam,

In the definition of a2 FIND Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a local variable to be set.

In the definition of a REMOVE Primitive in a Process, the Item field
contained an invalid value. The Item field must contain the name of
a variable to be set.

ERROR - *#***x**xx TNVALID QUEUE OPTION

In the definition of a FILE Primitive in a Process, the option field
contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a FIND Primitive in a Process, the option field

contained an invalid option. The valid options are FIRST, LAST,
NEXT, and BEFORE.

In the definition of a REMOVE Primitive in a Process, the option
field contained an invalid option. The valid options are FIRST,
LAST, and NEXT.

ERROR ~ **#***x%% REFFRENMCE INVALID IN QUEUE FIELD
In the definition of a FILE Primitive in a Process, the queue field

contained an invalid value. The queue field must -ontain the name of
a reference to a defined Queue.

T Tw ™ <",'"."'_.'".""




Hafou et Al el A i

In the definition of a FIND Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue, or the name of a valid
cross-reference set: Action, Constant, Item, Process, Queue,
Resource, Table, or Variable,

In the definition of a REMOVE Primitive in a Process, the queue field
contained an invalid value. The queue field must contain the name of
a reference to a defined Queue.

#44% ERROR - ******x*x _ RESUME REFERENCE MUST NOT BE NUMERIC OR GLOBAL

In the definition of the RESUME Primitive, a numeric valve or a
Constant or Variable was encountered in the Process field. This
reference must be a local variable.

#4344 - ERROR - TRACE MODE MUST BE EITHER 'ON' OR 'OFF'

In the definition of a TRACE Primitive, the ON/OFF field contained a
value other than "ON" or "OFF". These are the only valid values.

##44 ERROR - LOAD NODE IS NOT RECO®IIZED AS A RESOURCE

In the definition of a Load entity, a value was encountered in a node

field which was not a reference to a defined Resource. Nodes must be
Resources.

##44 ERROR - '*#**xx%%'! TG NOT DEFINED AS A PROCESS

In the definition of a Load, the name specified in the process field
was not defined as a Process. The name specified in this field must
be a defined Process.

#4444 ERROR - ******xxx TG NOT A LOAD DISTRIBUTION FUNCTION

In the definition of a LOAD, the name specified in the schedule field
was not a valid Load distribution.

#444% ERROR - ***#x**% ]S NOT DEFINED AS A CONSTANT OR VARIABLE

In the definition of a Load, a non-numeric value in the rate field
was not defined as a global Constant or variable. If the rate field

contains a non-numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the mean field
was not defined as a global Constant or Variable. If the mean field

contains a non~numeric value, it must be a defined global Constant or
Variable.

In the definition of a Load, a non-numeric value in the delta field

was not defined as a global Constant or Variable. If the delta field
contains a non-mumeric value, it must be a defined global Constant or
Variable.
B-7
""""" N e e e T e L e AR . o

Cote e te e Yt .
.t RSP PR
Al A b Rt M e a8,




In the definition of a Load, a non-numeric value in the priority
field was not defined as a global Constant or Variable. If the
priority field contains a non~-numeric value, it must be a defined
global Constant or Variable.

#### ERROR - NO SCENARIO DEFINED

No Scenario was defined. There must be a Scenario defined in order
to run a simulation on a model. -

##44 ERROR - PERIOD NOT DEFINED

In the definition of a Scenario, the period was not defined. The -
period length for a Scenario can be a numeric value or a defined
Constant.

###4 ERROR ~ TRIGGER ***#**%* NOT DEFINED AS A LOAD OR PROCESS

In the definition of a Scenario entity, a value in the trigger field
was not a Load or Process. Scenario triggers must be either Loads or
Processes.

##44 WARNING - '****¥x%%! DISTRIBUTION ONLY REQUIRES 1 PARAMETER

In the definition of an ACTION Primitive in a Process, the specified
distribution required only one parameter, but two were supplied. The
extra parameter should be deleted or the distribution should be
changed.

#4#4 WARNING - **** NOT LEGAL. USING D INSTEAD.
An illegal Table type was specified. The Table is being assumed to
be discrete. The valid table types are continuous (c¢), discrete (d),
and alpha (a).

###4 WARNING - ATTRIBUTE INITIAL VALUE IS NOT DEFINED
In the definition of an Item, Process, or Resource an attribute was

not assigned an initial value or was assigned an invalid value.
Attributes must be initialized.

=0

###4 WARNING - BLANK PRIORITY FIELD ASSUMES PRIORITY 0

In the definition of a CALL Primitive of a Process, the priority ¢
field was left blank. The priority is assumed to be zero.

[ In the definition of a LOAD entity, the priority field was left
{ blank. The priority is assumed. to be zero.

In the definition of a Scenario entity, the priority field was left
blank. The priority is assumed to be zero.

} #3444 WARNING - ***#x%4% IS AN ILLEGAL OPTION. USING NOWAIT INSTEAD.

- e T st 4 T et - . L - - . -
T PPN P S o S R ~ - e LI - -

P oA e e e e el A e A N e T T T TP P R e S e .
E-“_q'._{., ety ALY W, Ly S et T e L T N T D A A T S

et




Pl At il et aadh Sadechhabl Shadh SnSs Bl e e

In the definition of a CALL Primitive of a Process, the option field
contained an invalid option; a NOWAIT option is being assumed. The
valid options are BLOCK, WAIT, and NOWAIT,

##44 WARNING - '#****x*#*%x! TG NOT RECOGNIZED IN THIS CONTEXT

In the definition of an ASSIGN Primitive of a Process, an attempt was
made to assign a numeric value or a Constant or Variable, but there
was also a value in the qualifier field. The qualifier is being
ignored.

In the definition of an ASSIGN Primitive in a Process, an attempt was

. made to assign a value to the SCNODE keyword, or an atteampt was made
to assign a value to a Variable, but there was also a value in the
qualifier field. The qualifier is being ignored.

$444 WARNING - '**%%a%%x’ _ NO QUALIFICATION RECOGNIZED FOR IDENTIFICATION

In the definition of a COMPARE Primitive in a Process, a
unrecognizable qualifier for a numeric, a global Variable, or a
global Constant was encountered. Qualifiers are allowed only for
Items, Processes, Resources, and certain keywords.

#4444 WARNING - ***%*x*%x TG NOT RBCOGNIZED IN THIS CONTEXT FOR FUNCTION

In the definition of an EVAL Primitive in a Process, operands were
specified with a randan function or a secord operand was specified
for a function which only required one operand.

#4444 WARNING ~ ****x%x%*x TG NOT AN ACTION DISTRIBUTION - USING CONSTANT

In the definition of an ACTION primitive in a Process, the value in
the method field was not a valid Action distribution; the
distribution is being assumed to be CONSTANT. The valid
distributions are exponent, constant, lognomal, normmal, uniform,
Weibull, gamna, and Erlang.

If an execution error occurs during the simulation, execution will halt
and an error message will be printed in the statistical summary. In same
cases there may be a Simscript II.5 traceback. This traceback is a
hexadecimal formatted report which is to be disregarded by the user.
Following the error messages, the statistical summary lists the state of
the Process which was executing when the error occurred. The value of all
local variables and attached attributes for the Process are listed., All .
other output reports are also generated. ﬁ
)

Following are all of the execution errors which are produced and an
explanation of the conditions which cause each error. J

##44 EXECUTION ERROR DETECTED IN PROCESS *#####aw

An error occurred in the specified Process which caused an abnommal
termmination of the simulation.

P s e e e e e I S

.
« . - - - - - - .-t . P ] * e - - . - - . N
L L T T A S et et R e e S A, S e it ARSI S S N L APt .
e e e e e - AR, . . Ot R TSI P L e . N LTI LR
l._'- PIRIPAL I AP P SIS S I IPL BV I DO LI, PULI PO I D IR A VY R R At I AL, S A LIPS I W WA AT WA T




###4 EXECUTION ERROR - BRANCH PROBABILITY FOR CURRENT
STATEMENT IS NOT A NUMBER

The BRANCH probability in a BRANCH Primitive in a Process does not
evaluate to a number,

#4##4 EXECUTION ERROR - LOOP NUMBER FOR CURRENT
STATEMENT IS NOT A NUMBER

The value of the LOOP counter in a Process is not a number.

###4 EXPECUTION ERROR - TEST STATEMENT ENTITY IS
NOT A RESOURCE OR QUEUE

The value to be tested by a TEST Primitive in a Process is not a
Resource or a Queue. The TEST Primitive can only test a Resource or
a Queue,

##44 EXECUTION ERROR - VALUE OF RESET IN CURRENT
STATEMENT IS NOT A NUMBER

The value for the number of units to be reset by a RESET Primitive is
not a number. The value for the number of units to be reset must
evaluate to a number.

##4# EXECUTION ERROR - ATTEMPT TO RESET # OF RESOURCE
UNITS OUTSIDE OF LEGAL LIMITS

An attempt was made to reset a number of Resource units which would
make the number of units inactive or active greater than the total
number of units which were defined for this Resource.

#### EXECUTION ERROR ~ VALUE OF UNITS REQUESTED IN CURRENT
STATEMENT IS NOT A NUMBER

The units field in an ALLOC Primitive did not resolve to a number.
This field must resolve to a number.

###4 EXECUTION ERROR ~ VALUE OF PRIORITY IS NOT LEGAL

The Priority field in an ALLOC Primitive did not resolve to a nunber.
This field must resolve to a number.

##4# EXECUTION ERROR - VALUE OF UNITS TO BE RELEASED IN CURRENT ¢
STATEMENT IS NOT A NUMBER

Y
ey

s, T8

The units field in a DEALLOC Primitive did not resolve to a number.
This field must resolve to a number.

##44 EXECUTION ERROR - RESUME ATTEMPTS TO RESUME A PROCESS WHICH
IS NOT SUSPENDED

An attempt was made to resume a Process instance which was not
suspended.

B-10

R . . . o e -
P e T G T T P TP TP
L] LERFCIL T PR R T TP U T S PP SE SN

. . . . . .

P . . D e e e e et et .
wogTe e Ty T T AT AN e T s B T TS IR, TN

O T G S ST B FITRN p \ . M IR I PSR ST PN G - -




M T e T e Te T T WY

- C AR Ar i AL AL S e S ey o . 2 w
N 3} . N S N Y Y W T ™ ™ = T~ =W~ W~a~ 5=

"

l'l C e
A A

e
l‘.:'. s a'a 2l

###4 EXECUTION ERROR - A REFERENCE IN THE CURRENT PRCCESS EVALUATES TO
AN ILLEGAL TYPE FOR THE CURRENT STATEMENT

The Resource field in a RESET Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

The Resource field in an ALLOC Primitive did not resolve to a
Resource. This field must resolve to a defined Resource entity.

The Resource field in a DEALLOC Primitive did not resolve to a
Resource. This field must resclve to a defined Resource entity.

###4 EXECUTION ERROR - AN ACTION REFERENCE DOES NOT EVALUATE TO A NUMBER

The scheduling time or the scheduling delta time for an action does
not evaluate to a number.

##44 EXECUTION ERROR PRIMITIVE REFERENCE DOES NOT EVALUATE TO AN ACTION

an undefined opcode for a Primitive was encountered. The opcode was
assumed to be the name of a reference to an Action, but it did not
resolve to a defined Action name.

#444 EXECUTION ERROR ~ PROCESS IN CURRENT CALL STATEMENT IS NOT DEFINED
AS A PROCESS

An attempt was made by a CALL Primitive to initiate a Process which
was not defined. The Process name in a CALL Primitive must be a
reference to an entity defined as a Process.

#444 EXBCUTION ERROR - PRIORITY IN CALL DOES NOT EVALUATE TO A NUMBER

The priority in a CALL Primitive did not evaluate to a number. The
priority for calling a Process must evaluate to a number.

#### EXECUTION ERROR - DISAGREEMENT IN NUMBER OF GIVEN PARAMETERS BETWEEN
CURRENT CALL STMT AND CALLED PROCESS

The number of given parameters in a CALL Primitive differs fram the
number of given parameters in the definition of the Process to be
called. These parameters must correspond.

#### EXBCUTION ERROR - DISAGREEMENT IN NUMBER OF RETURN PARAMETERS BETWEEN
CURRENT CALL STMT AND CALLED PROCESS

The number of return parameters in a CALL Primitive differs fram the
nunber of return parameters in the definition of the Process to be |
called. These parameters must correspord. 4

##44 EXBECUTION ERROR - ORDER RELATIONS ARE NOT DEFINED FOR COMPARE TYPES

For the non-numeric types being campared, an invalid relation was
specified. The only valid relations for these types is equal or not
equal.




44

LE2 2

44

H4$

#14#

B4

444

Lad 1

L2221

EXECUTION ERROR - EVAL VARIABLE DOES NOT EVALUATE TO A NUMBER

One of.the variables in an EVAL Primitive for a function other than a
Table does not evaluate to a number.

EXBECUTION ERROR ~ EVAL FUNCTION IS NOT RECOGNIZED AS AN .
ARITHMETIC OPERATOR OR A TABLE REFERENCE

The reference for the function in an EVAL Primitive is not a legal
arithmetic function or a reference to a defined Table.

EXECUTION ERROR - EVAL VARIABLE FOR DISCREET OR CONTINUOUS TABLE
DOES NOT EVALUATE TO A NUMBER

In an EVAL Primitive which is being used to look up a value in a
Table, the value used to index into the Table, the x value, does not
evaluate to a number.

EXBCUTION ERROR -~ ILLEGAL ASSIGN: CURRENT NODE
MUST BE CET TO A RESOURCE

An EVAL Primitive attempted to set the current node to a reference
which was not a defined Resource. The current node must be a
Resource.

EXECUTION ERROR ~ ASSIGN ATTEMPTS TO MODIFY A QUALIFIED
TYPE FOR WHICH NO ATTRIBUTE IS DEFINED

An attempt was made to assign a new value to an attribute of an
entity for which no attributes can be defined. Only Processes,
Resources, and created Items have attributes which can be modified.

EXBCUTION ERROR -~ ****%%*+ ATTRIBUTE NOT DEFINED FOR ITEM

An attempt was made to assign a new value to a nonexistent attribute
of an Item.

EXECUTION ERROR - **#*x+* ATTRIBUTE NOT DEFINED

An attempt was made to assign a new value to a nonexistent attribute
of a Process or a Resource.

EXECUTION ERROR - ASSIGN ATTEMPTS TO MODIFY A TYPE WHICH CANNOT BE
MODIFIED

An attempt was made to assign a new value to an entity which cannot
be modified; i.e., a global Constant, a number, or a keyword other
than $SCNODE.

EXECUTION ERROR - ATTEMPT TO CREATE AN ENTITY
WHICH IS NOT AN ITEM

An attempt was made to create an entity which is not an Item. Only
references to Items may be in the create list of the CREATE
Primitive,

B-12

LY




P
*e .
e uh 2,

PO IR

"

RSN N AR Al N ACRAR A T A IR Rl g Yt R

Hi4e

#444

LE2 3

e

LAEL

LEL L

a4

e

443

o ]

AAMALEE ek Bag Sag Sags Sk deam Bk aee e T W Y Y W T W W T W W Ty T - — e

EXECUTION ERROR - ATTEMPT TO DESTROY AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to destroy an Item which had been filed on a
Queve and not removed before execution of the DESTROY Primitive.

EXBCUTTON ERROR - CURRENT PROCESS ATTEMPTS TO DESTROY AN ITEM
WHICH IS NOT DEFINED OR DOES NOT EXIST

An attempt was made to destroy an Item which was not defined or
created, or which has already been destroyed.

EXECUTION ERROR -~ PROCESS FIELD IN SEND STATEMENT IS NOT
DEFINED AS A PROCESS

The reference in the Process field of a SEND Primitive was not
resolved as a Process. Items can only be sent to a defined Process.

EXBECUTION ERROR - ATTEMPT TO SEND AN ITEM WHICH IS
CURRENTLY FILED ON A QUEUE

An attempt was made to send an Item which is currently filed on a
Queue to another Process before the Item was ramoved from the Queue.

EXBECUTION ERROR - CURRENT PROCESS ATTEMPTING TO SEND A ENTITY
WHICH IS NOT DEFINED AS AN ITEM

An attempt was made by a SEND Primitive to send an entity other than
an Item to a Process. Only references to Items may be specified in
the SEND Primitive to be sent to Processes.

EXECUTION ERROR - ITEM ***#**%*x ATTEMPT TO BE RECEIVED BY PROCESS
*eRAk%A% IS NOT IN PROCESS NEED LIST

An attempt was made to cause a Process to receive an Item which was
not on the list of Items which the Process should receive.

EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
WHICH CANNOT BE FILED

An attempt was made by a FILE Primitive to file an entity which
cannot be filed. Only Items can be filed.

EXECUTION ERROR ~ CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
ON AN UNDEFINED QUEUE

An attempt was made to FILE an Item on a Queue which was not defined.
The queue reference in the FILE primitive must resolve to a defined
Queue.

EXECUTION ERROR ~ CURRENT PROCESS ATTEMPTS TO FILE AN ITEM
WHICH IS ALREADY ON A QUEUE

An attempt was made to refile an Item.

An Item can be filed on only
one Queue at any given time.

B-13




e T T T R A TR R T T AT R T T TR WL T R e wewgeeo.

|

et a®
URSEEN

PRI
e, . -
LI aate Cataia

TR TR TN T T Y W e e " & 2t -
. e e S B S R - B Aadiiaci At S Ml i Aad endbedl S badl Andh s ) W W Wy W

#44#% EXECUTION ERROR - CURRENT PROCESS ATTEMPTS TO FILE AN ENTITY
BEFORE OR AFTER AN UNDEFINED ENTITY

An attempt was made to file an entity before or after an entity which
did not exist on the Queue.

#4#4 EXBECUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE
AN ITEM FROM AN UNDEFINED QUEUE

An attempt was made to remove an entity fram an undefined Queue.

#3##% EXBCUTION ERROR - CURRENT PROCESS ATTEMPTING TO REMOVE
'NEXT' ITEM WHICH DOES NOT EXIST

An attempt was made to remove a non-existent current Item from a
Queue.

###% EXECUTION ERROR ~ A REFERENCE FOR A QUEUE IN A FIND PRIMITIVE
IS NOT DEFINED AS A QUEUE OR XREF SET

An invalid reference was specified in a FILE Primitive as the queue
name. Only Queues or cross reference sets are valid for the Queue
name field.

##4# EXECUTION ERROR - ***#*#%* ATTRIBUTE OF A RESOURCE IS NOT DEFINED
An attempt was made to reference a non~existent attribute of a
Resource. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ, as
well as user-modifiable attributes.

#### EXPCUTION ERROR - ***%x** ATTRIBUTE OF A RESOURCE UNIT NOT DEFINED
An attempt was made to reference a non-existent attribute of a
Resource unit. Valid attributes are NIDLEQ, NBUSYQ, NWAITQ, NINACTQ,
as well as user-modifiable attributes.

#### EXECUTION ERROR - ****##x** ATTRIBUTE OF A PROCESS IS NOT DEFINED

An attempt was made to reference a non-existent attribute of a
Process.

#### EXECUTION ERROR - ***x*xx ATTRIBUTE OF A TASK IS NOT DEFINED
An attempt was made to reference a non-existent attribute of a Task.
####4 EXECUTION ERROR - *####** ATTRIBUTE OF A QUEUE NOT DEFINED

An atteanpt was made to reference an invalid attribute of a Queue.
The valid attributes are NQUEUE and TQUEUE.

#### EXECUTION ERROR -~ #*#**#%#+ ATTRIBUTE IS NOT DEFINED FOR CURRENT
ITEM REFERENCE *#*#*%4%#* TN EXECUTING LOGIC

An attempt was made to reference a non-existent attribute of an Item.

B-14

. . . P e R SR - - -t . . - “~ Y .
D T T Pt P e e A T R PRSP N T PO T A S e S LI
SALIPIE s L PR, R T 0 L W P R SRS Sy Sy '.'\-P """"""" e .‘.-"_"' .\.k\ Y

- - T

.....

0 -
e .
Selata™)h

-

[ ST A SR R .3 OIS



.
PO Y Aamde A

o

##4% EXBCUTION ERROR ~ ***x*** ATTRIBUTE SPECIFIED FOR A TYPE
FOR WHICH NO ATTRIBUTES CAN BE DEFINED

B g

An attempt was made to reference an attribute of a type which does
not have attributes. Entities which have attributes are Resources,
Processes, and Items.

ST YT 8 30 BN N N

#4444 EXBCUTION ERROR - KEYWORD REFERENCE IS BLANK

When the simulator tried to resolve a Keyword, the reference field
for the parameter was found to be blank.

B ###4 EXBCUTION ERROR - PROCESS NODE HAS NOT BEEN DEFINED

An attempt was made to reference the process node of a Process, but
the node was not defined.

#3444 EXECUTION ERROR - REFERENCE FOR $ NODE IS NOT A PROCESS

When the simulator tried to resolve the Keyword SNODE, the reference
~as not a Process.

$#44 EXECUTION ERROR - ROUTE SET ERROR - NO PATH IN NETWORK

When the simulator tried to resolve SNXTNODE or SLINK, there was no
valid path defined in the LPT.

#4##% EXBCUTION ERROR - CNODE FOR EXBCUTING PROCESS NOT DEFINED

When the simulator tried to resolve a link or a next node, there was
no current node defined for the executing Process.

#### ERROR - ILLEGAL TYPE

In a Process which was executing when an abnormal termination of the
simulat’ n occurred, a local variable was of an invalid type.

#4#44 ERROR - ILLEGAL ATTRIBUTE TYPE
In a Process which was executing when an abnormal termination of the
simulation occurred, a local variable which resolved to an Item, a
Process, or a Resource had an invalid at:tribute.

#3#% WARNING - ALPHA TABLE LOOKUP FAILED

In an EVAL Primitive being used to look up a value in an alpha Table,
a value was not found which corresponded to the lookup index value.

#34# WARNING - EMPTY TABLE DETECTED

A Table was encountered which did not have any entries in it,

|

A e e e e e .
t. e e A T A TN

GO LN PO PC ARG




TR g— T T W W W W W W W W

#### SIMULATOR ERROR IN COMPUTING NEXT TIME ON
METHOD = ***%*%#% REF] = *%kkkk#* REFD = ***k&k** STREAM = AXkAdansk

An error occurred when an attempt was made to campute the next time
in the simulation.

##4#4 INTERNAL SIM ERROR TRYING TO SUSPEND MORE UNITS OF

khkkkhih THEN

An error occurred when an attempt was made to deallocate units of a
suspended Process instance.

#4444 SIMULATOR ERROR - QUEUE.START ATTEMPT TO FILE UNSUCCESSFUL

The simulator attempted to restart tasks blocked fram a Queue when
there were no tasks currenty blocked.

B-16




APPENDIX C

GLOSSARY

ACTION - A discrete event that consumes time during a simulation run.

ANALYSIS USER INTERFACE (AUI) - The interface between the user and the
AISIM simulator.

ANALYSIS USER INTERFACE (AUI) READY STATE - Any time after the Analysis
User Interface has been invoked, except during a simulation period. This
state is indicated by the "*" prampt.

ARCHITECTURE DESIGN EDITOR (ADE) - A sublevel of the DUI which provides
the user with the graphics commands to construct a system architecture.

ARCHITECTURE DESIGN EDITOR (ADE) MENU ~ A representation of the valid
symbols available to the user during an ADE session for building an
architecture. See ADE MENU.

ARCHITECTURE DESIGN EDITOR (ADE) READY STATE - The state of the system
while in the ADE that allows the user to enter camands. This state is
indicated by the "#" prompt.

ATTRIBUTE - The specific characteristic of a defined entity.

ATTRIBUTE FORM - A list of available attributes fram which the user must
select one attribute to be used for testing or data sampling.

BLOCK ~ Used in conjunction with the CALL Primitive (see section 3.9.5) to
indicate that the calling task is to call the specified task and wait
until all associated tasks are complete before continuing.

BREAKPOINT ~ A user-specified condition which, when reached, suspends the
simuylation to allow the user to monitor the current state of the
simulation.

CONSTANT - A value that is not subject to change once a simulation run has
been started.

DATABASE - The accumulation of data in a specified form related to a
specific function or operation.

DEFAULT CONDITION - The condition that exists if no parameters are
explicitly stated.

DESIGN USER INTERFACE (DUI) - The interface that allows the user to create
or modify a design database.

LSt T Tt U T St R T S P
L.,(-,.r(‘q'~,{_ (AP N R e R TS i s P AN S Aty W A RS R A S S S SR SERRAS

-
o'

R N ™ N N ™ W W W "= =~

WE Sy ST LN VRS )




ML e Y .

AR Pt St Sath St Shad S hegs Snit Jendu 2n o 2 b e o e ane e e e aon

DESIGN USER INTERFACE (DUI) READY STATE - Any time after invocation of the
Design User Interface, except when utilizing the PEI or ADE sublevels of
the DUI. This state is indicated by the "™ prompt.

ENTITY - A predefined set of constructs that have user defined attributes
(see section 3 for valid AISIM entities). They are the "building blocks”
with which the user creates his model.

ENTITY-NAME - The user-defined name of a valid entity.

ENTITY-TYPE - A type as opposed to a specific, user-defined instance of an
entity.

FORMS MODE ~ A specific function that provides areas which may be filled
in by the user, and protected fields which define the areas to be filled
in.

INFINIZ . RESOURCES - A feature which allows the simulator to simulate a
Process as if there were no limit to the number of Resources available to
it.

LOAD - The amount of activity to be applied to the simulation of a
process.,

L-NODE - A leaf node in an architecture which typically represents an
external load on the system.

MODEL ~ A group of AISIM entities which represent a certain function or
group of functions.

NOWAIT - Used in conjunction with the CALL Primitive to indicate that a
Process is to be called by a parent Process and the parent Process is to
continue processing in parallel.

OFF-SCREEN - The portion of a graphics picture not visible to the user.
ON~-SCREEN -~ The portion of a graphics picture visible to the user,

PERMANENT DATABASE (sometimes referred to as the Design database) - The
user-named database, in which the data for a modeled system resides. (As

opposed to the working database which temporarily holds Design data while
editing that data).

PRIMITIVE ~ The model entity used to model individual steps in an
operation or function. A Process is constructed from a sequence of
Primitives.

PROCESS - A graphical representation of a sequence of events, act1v1t1es
and decisions that models a real-world operation or functlon.

PROCESS EDITOR INTERFACE (PEI) - A sublevel of the DUI that provides the
user with the graphics commands to construct Processes.

A "‘*1




SRR TN TS TR W . - Vg W -
F o Cos R AT RN VT Rl A T T —— Ty ——————— ~——

APPENDIX D

MESSAGE ROUTING SUBMODEL

The message routing submodel provides a means for a user to route messages

through a network which is defined by an architecture and a Legal Path
Table. *

The message routing submodel consists of one Item representing the message
dispatched through the system architecture, four Processes representing
the activities required for the inter-node cammunication and other
supporting entities. Everything required for this model is included in
the AISIM system library and can be merged into a user's model in a simple
operation. (See the Library User Interface, section 10).

Although intra-node communication is modeled by means of a collection of
four Processes, the user need explicitly invoke with a CALL Primitive (see
section 3.9.5) only one of them. To represent the intra-Node triggering
of a Process one calls the first Process in the submodel called "MRS".
This process is called using a WAIT option if the user wishes to suspend
the calling Process until message routing sulmodel processing is complete.
It allows the calling Process to wait for a response message to be sent
back to the calling node before it continues processing. If the MRS
Process is called with a NOWAIT option, processing in the message routing
submodel will proceed concurrently with the calling Process.

The calling process must call process MRS with six GIVEN values; no RETURN
values are required. The GIVEN parameters are:

1. the name of the destination process to be triggered,

2. the priority associated with the destination process,

3. the type of message to be generated -- SREQRESP, SREQNORE, or
SRESP. SREQRESP causes a response message to be sent to the
origin, SREQNORE causes no response message to be generated, and
SRESP inhibits both the response message and the triggering of a
destination process,

4, the length of the message,

5. the destination node, and

6. the name of the message item.

The user must also set up attributes of the Resources representing the
nodes and chamnels (see section 3.6). All nodes which messages utilize

D-1

............




LR gun 2o

DR ARG M N BRI AR A B Al el A Aot A Bk Sl il A A i G s Ll A SN et

must have an M.ROUTE attribute which gives the nodal processing delay in
time units per message. Each channel resource must have a RATE attribute
giving a channel transmission delay in time units per character.

The entities that camprise the message routing submodel are described in
the following sections.

Item MSG

This Item is the basic prototype for messages created by the MRS. If the
user does not want specific point-to-point transit times, all statistics
for message routing will be accumulated for this one entity. If specific
point-to-point transit times are desired, the AISIM user copies MSG to
another Item name (through the Design User Interface COPY cammand
described in section 6.1.2) and provides the unique name as parameter six
in the call to the MRS Process. All attributes of the Item MSG are

essential to the message routing submodel. The attributes are explained
below.

DEFINITION OF ATTRIBUTES FOR ITEM MSG:

Attribute Default Description
Name Value
CNODE SCNODE The current node where the message resides.
FNODE SCNODE The source node of the message.
LENGTH 99999999 The length of the message in bytes.
TYPE SREQNORE The message type. S$REQRESP is a request

message requiring a response when the
destination is reached. SREQNORE is a
request message with no response required.
SRESP is a response message.

RPROC SERRCR The destination Process name.
RPROCPRI 99999999 The priority for the destination Process.
TNODE SCNODE The destination node.

D-2




i
i

I NI .- P S P st S e T . o
PRI RS I NI P I I P I I A T N

0 T R TR RTR TN TR WS TR v e vy e

TR R S T g W W Wy

Resources

No Resources are contained in the message routing submodel. However, to
use it, the user must specify an architecture. Each nodal Resource which
messages utilize must have an M.ROUTE attribute which gives the nodal
processing delay in time units per message. Each channel Resource must
have a RATE attribute giving a channel transmission delay in time units
per character.

Actions
Two Action entities are used by the message routing submodel -~ ROUTE.OH
and XFER.OH. ROUTE.OH is found in Process NODEPROC and is used for nodal

processing delays while XFER.OH is found in Process CHANPROC for channel
transmission delays.

MESSAGE ROUTING SUBMODEL PROCESSES

The message routing submodel contains four Processes. Details of these
Processes do not have to be known by the user if the sulmodel can be used
as is. However, if the user needs to make changes, knowledge of how the
processes work is essential. This subsection describes the functioning of
these Processes.

Process MRS

This is the top-level Process of the message routing submodel and is
called when a user wishes to make use of the sulmodel. It causes a
request message to be generated. Following is a list of the parameters of
this Process.

PROCESS NAME: MRS — Generate a request message and pass it to
NODEPROC.

LOCATION: Executes in all nodes.

GIVEN: PROCESS (DATA TYPE: PRCCESS) -~ the name of the process to
be initiated in the destination node.

PRIORITY (DATA TYPE: REAL) -— the priority of the
destination process.

MSG.TYPE (DATA TYPE: ALPHA) -- the type of message to be
created. The only legal values for this parameter are:
SREQNORE — a request message is created which requires no
response, SREQRESP -- a request message is created which will
request a response at its destination, SRESP — used only if
no process is to be initiated in the destination node and no
response is required.

MSG.LNTH (DATA TYPE: REAL) -- the message length.

D-3




. AD-A161 556 ASIN CAUTOMATED INTERACTIVE SIMULATION MODELING SYSTEM) 4/4
- vax YERSION USER‘.. (U> HUGHES RIRCRAFT CO FULLERTON CA
ROUND S‘ISTEHS GROUP S KNEEBURG FEB 85 ESD-TR-85-127
UNCLASSIFIED F33615-81 C-5i F/G 9/2 NL




A g

&
<
M_
[ 38
gt 3
S—
"
-g
2z
S ¢
= «
[
S
as
w2
E‘
e §
=3
Ws
3
S 8
g
53
-3

i e T e

t .

—

- - ® L.
-t

B A

N -

ARt
LI A

A
A

- X

s




Lttt iree e Jharn eafs Ratet b oih Jiintt it e bt el e Shegecib i -Sdhe-in - L 20 At e A SN Rt e S A St e N A it

" e T T A N W W W T W W WY BT W YR

TO.NODE (DATA TYPE: RESOURCE) - the message destination
node.

MSG (DATA TYPE: ITEM) -- the name of the message item to be
created.

RETURN: None

CALLS: NODEPROC ~

The Process begins by creating a message and initializing various
attributes of it. The attributes CNODE and FNODE are initialized to the
current node in which the Process is executing. The attribute RPROC is
set to the Process that will be triggered at the message destination node.
The attribute RPROCPRI is set to the priority at which the requested
Process will execute. The attribute TYPE is set to the parameter passed
in MSG.TYPE. The attribute length is set to the length of the message.
The destination node is stored in the TNODE attribute. Process MRS then
calls Process NODEPROC with a WAIT option and gives it the newly created
message., Fiqure D-1 is a listing of this Process.

“»

D-4




AN NI S aiun aat o

PN LR A §

PROCESS

A A ANt A A e A A W Al Al S N

A

MNEMONIC DESCRIPTION
MRS GENERATE A PROCESS REQUEST MESSAGE AND INITIATE I/0
ENTRY OPCODE  PARM PARM PARM COMMENT
START ALL
GIVEN PROCESS PRIORITY MSG.TYPE
MSG.LNTH TO.NODE MSG
CREATE  MSG CREATE MESSAGE
ASSIGN  MSG.LNTH SET MESSAGE LENGTH
MSG LENGTH
ASSIGN  PROCESS SET PROCESS
MSG RPROC
ASSIGN  PRIORITY SET PRIORITY
MSG RPROCPRI
ASSIGN  TO.NODE SET DESTITION
MSG TNODE
ASSIGN  MSG.TYPE SET MESSAGE TYPE
MSG TYPE
CALL NODEPROC WAIT PRIORITY EXECUTIVE SERVICING OF MSG
GIVEN MSG
END
LOCAL VARIABLES OF PROCESS MRS
1 PROCESS (X) 2 PRIORITY 3 MSG.TYPE 4 MSG.LNTH
§ TO.NODE 8 M. 99 7 NODEPROC (P)

Figure D-1. Listing of Process MRS

D=5

T T T Tttt e N R N e S,
O S A A G O AR

A.s 4 o 2 o




L TR T ———

DRSSO 2 P gt i e e Ak G- A o i en i et

Process NODEPROC

This Process performs nodal processing and determines whether the message
is at its destination. When the Process is called, it is given the
message Item. The following describes the parameters of the Process.

PROCESS NAME: MNODEPROC -- Nodal Processing

LOCATION: Executes in all nodes. -
GIVEN: MSG (DATA TYPE: ITEM) -- This parameter is the name

of the message item created in process MRS. -
RETURN: None
CALLS: CHANPROC, DESTPROC

The first step of this Process is to assign the name of the current node
to a system variable. The processing delay is then calculated and charged
against the current node.

The message's current position is campared with its destination. If the
message is at its destination, the Process detemmines whether the message
is a request or response message. If it is a request message, the Process
DESTPROC is called with a WAIT option and a priority equal to the
requested priority. The requested Process is initiated in the destination
node by the Process DESTPROC., If the message is a response message, the
Process DESTPROC is called to destroy the message. If the message is not
at its destination node, the Process CHANPROC is called to forward the
message to its next node. Figure D-2 is a listing of this Process.

D-6

e '.-.'_. "a? ‘J..‘_.- PO LI UL PN R e e e
»

..... A A A S

AT e ST



PO M A" " ol o e afer ol - St

PROCESS
MNEMONIC DESCRIPTION
NODEPROC NODAL PROCESSING AND ROUTING
ENTRY  OPCODE  PARM PARM PARM COMMENT
START  ALL )
GIVEN  MSG
ASSIGN ncascODE CNODE INDICATE CURRENT NODE
.N
ASSIGN  C.NODE M.ROUTE PROCESSING RATE OF NODE
. OVHM
ASSIGN  MSG LENGTH GET MESSAGE LENGTH
MSG.LNTH
EVAL OVERHEAD MULTIPLY COMPUTE PROCESSING DELAY
MSG.LNTH RT.OVHD
ALLOC  C.NODE 1 ALL ALLOCATE CURRENT NODE
SPRIORTY
ROUTE.OM CONSTANT OVERHEAD DELAY FOR ROUTING
DEALLOC C.NODE 1 RELEASE C.NODE TO OTHERS
COMPARE NSG CNODE  EQ IS MSG AT DESTINATION?
MSG TNODE ~ CONTROL
CALL CHANPROC WAIT s FORWARD MSG TO CHANNEL
GIVEN  WSG
BRANCH  END 100
CONTROL ENTRY MESSAGE AT DESTINATION
CALL DESTPROC WAIT ) CONTEXT SWITCH MESSAGE
GIVEN  WSG
END ENTRY
END
LOCAL VARIABLES OF PROCESS NODEPROC
1 MSG (1) 2 C.NODE 3 WSG.LNTH 4 OVERHEAD (A)
S ROUTE.OM (A) 8 CHANPROC (P) 7 DESTPROC (P)
Figure D-2. Listing of Process NODEPRCC
D=7
A SRS S




il N 2O A TR ST

e e e 24

LAt S S AU A et e 2 T~

Process DESTPROC

This Process models the processing of a message at its destination. It
temminates request messages, generates response messages and triggers the
requested Process. The following describes the parameters of this
Process.

PROCESS NAME: DESTPROC — Destination processing of message items.

LOCATION: Executes in all nodes. -
GIVEN: MSG (DATA TYPE: ITEM) - This parameter is the message

item created in process MRS. .
RETURNS: None )
CALLS: CHANPROC

This Process determines whether the message is a request or response
message. If it is a response message, this Process destroys the message
and terminates. If the message is a request message, the name of the
requested Process is retrieved from the RPROC attribute of the message,
and the process is initiated. DESTPROC waits until the requested process
campletes. Next, DESTPROC checks the message attribute TYPE to see
whether the requesting Process is waiting for a response. If no response
is desired, the message is destroyed and DESTPROC terminates. If a
response is requested, the message type is changed to response, the
destination node is changed to the origin, and the origin is changed to
the current node. Then the Process CHANPROC is called to route the
message back to its origin. Figure D-3 is a listing of this Process.

D-8




T YL wTwYw TVTY Y Y A e il
T~ v AR AEAN Rk Sl A LA Sl el g w-;-—v-v-—"-‘

PROCESS
MNEMONIC OESCRIPTION
DESTPROC PROCESSING AT DESTINATION OF MESSAGE
ENTRY OPCODE PARM PARM PARM COMMENT
START ALL
GIVEN MSG
ASSIGN MSG CNODE CURRENT NOOE
: C.NODE
- COMPARE MSG TYPE EQ IF RESPONSE, DESTROY
SRESP DESTROY
ALLOC C.NODE 1 ALL ALLOCATE CURRENT NODE
SPRIORTY
ASSIGN vSG RPROC EXECUTE THE CALLED PROCESS
PROCESS
ASSIGN MSG RPROCPR] SET PRIORITY FOR REQ PROC
PRIORITY
CALL PROCESS WAIT PRIORITY WAIT UNTIL COMPLETE
GIVEN MSG
RETURN MSG
DEALLOC C.NODE 1 DEALLOCATE CURRENT NODE
COMPARE WMSG TYPE EQ NO RESPONSE REQ-)>DESTROY
SREQNORE DESTROY :
ASSIGN SRESP CHANGE MSG RESPONSE TYPE
MSG TYPE
ASSIGN MSG FNODE SWITCH FROM AND TO NODES
MSG TNOOE
ASSIGN usG CNQDE CURRENT NODE IS FROM NODE
wSG FNODE
CALL CHANPROC WAIT "] RETURN MESSAGE TO ORIGIN
GIVEN vSG
BRANCH END 100
DESTROY ENTRY TERMINATE MESSAGE AT DEST.
DESTROY WMSG TERMINATE MSG
END ENTRY
END

LOCAL VARIABLES OF PROCESS OESTPROC

1 MSG (1) 2 C.NODE 3 PROCESS  (X) 4 PRIORITY
§ CHANPROC (P)

—p—e—-

Figure D-3. Listing of Process DESTPROC

gy

Iy

D-9

et N . . e T \. T e e e T T e ._ . g .- . n‘."
~-<A...~.4_LA:LA .';Q--\ PSR WA L --;' PR RS WA A AL LA L) ORI .-\ \ \ \ - -_.}

. CI e . S e - e e et e e~ . -
RN -,-.c....... LA e e --'.',‘ At et Tt et e T .o




Lot e .
. -~ MR T I

SRR R e A e et e .. S e e e T N R T A e - -
I ST I RPN S I SIS Il P RO T SR R S I Ot S AR TIPS F AP T F NN

- EER Rt o e i S R e Y .—-._._:-;r,v—”_.j—.r.r.—r;rjr:v:‘

Process CHANPROC

Process CHANPROC extracts the current node and the destination node fraom
the message Item. It accesses the LPT to detemmine the next node and the
connecting channel. The channel is allocated to simulate its use, and the
Process NODEPROC is called. The following describes the parameters of
process CHANPRCC.

PROCESS NAME: CHANPROC — full and half duplex channel logic

LOCATION: Executes in all nodes

GIVEN: MSG (DATA TYPE: ITEM) -- This parameter is the -
message item created in MRS, v

RETURN: None

CALLS: NODEPROC

The first step of this Process is to assign the current node to the system
variable SCNODE and to determine the destination node for the message.
Then the next node and next channel are extracted from the LPT, and the
channel is allocated. The transfer time for the message is assumed to be
a constant rate. The action XFER.OH simulates the time used to traverse
the channel. The value of the current-node attribute of the message is
changed to the next node to update the message's position, and the system
current node indicator (SCNODE) is also set to the next node. The channel
is then deallocated and the Process NODEPROC is called. Figure D-4 is a
listing of this Process.

D-10




| A S i

RO PR P et Al e N St B S A SR e S S it 2 e e

PROCESS
MNEMONIC DESCRIPTION
CHANPROC FULL AND HALF DUPLEX CHANNEL LOGIC
ENTRY OPCODE PARM PARM PARM COMMENT
START ALL
GIVEN MSG
ASSIGN :EGODE CNODE SET INTERNAL NODE CURRENT
N
ASSIGN  MSG TNODE GET DESTINATION NODE
T0O.NODE
ASSIGN  SNXTNODE TO.NODE SET NEXT NODE TO DESTN
NXT . NODE
ASSIGN  SCHANNEL TO.NODE GET CHANNEL TO NEXT NODE
CHANNEL
ALLOC CHANNEL 1 ALL OBTAIN CHANNEL FOR XFER
SPRIORTY
ASSIGN  CHANNEL RATE WHAT IS CHANNEL RATE?
VSPEED
ASSIGN  MSG LENGTH MESSAGE LENGTH
VLENGTH
EVAL VM.OVHD MULTIPLY CALCULATE TRANSFER TIME
VSPEED VLENGTH
XFER.OH CONSTANT VM.OVHD DELAY DUE TO TRANSFER TIME
ASSIGN  NXT.NODE MSG RESIDES IN NEXT NODE
vsSG CNODE
ASSICN :XT.NgDE SET INTERNAL NODE REGISTER
CNOD
DEALLOC CHANNEL 1 FREE UP CHANNEL AFTER XFER
CALL NODEPROC WAIT L ROUTE MESSAGE |0 NEXT NODE
gzzEN MSG

LOCAL VARIABLES OF PROCESS CHANPROC

1 MSG
S VYLENGTH

(D 2 TO.NOOE 3 NXT.NODE 4 CHANNEL
8 VM.OVHD 7 XFER.OH (A) 8 NODEPROC (P)

Figure D-4. Listing of Process CHANPROC

e I S S et e e e
P AL A AR AL S .. ., - .

D-11

n*e®. w'et. e, . A AN N
PP P P OO W AT VIS AT WD AL I iy




- - L S A Y o The Shot At T T Aow e it Bre B4 Moo Sl g e wTvTw — T T
F«w. BRI SO A AR O CAR AC EINC YA MO SALIA SANAN BARA SN A LS ST AS e

T

e Rt

MR R W)

(R R Tk o 4

RN
Co
N

G
_

L
e

NIk
K S .

"

4
]
A 0 ACF

LI T e IR s T T IR
o e Lt e e e METRATEY
- ® .
o

. . o' . 4 .n.
AP ST I RGN PRI PR

LRI AT e T ey ey -

A IR IR I IR
I R L T TN
DRI

.
WIS VUV ULVIUWER




